APP下载

喜马拉雅造山带加里东期构造作用:以马拉山-吉隆构造带为例*

2015-07-21高利娥曾令森许志琴王莉

岩石学报 2015年5期
关键词:造山片麻岩喜马拉雅

高利娥 曾令森 许志琴 王莉

1.大陆构造与动力学国家重点实验室,中国地质科学院地质研究所,北京 100037

2.河南省有色金属地质勘查总院,郑州 450052

青藏高原具有“多陆块、多岛弧”组成的基本格局及显示“多洋盆、多俯冲、多期碰撞和多期造山”的动力学作用过程(Hsü et al.,1995;Yin and Harrison,2000;许志琴等,2006)。自新元古代以来,组成青藏高原的地体和造山带经历了长期的构造岩浆作用,最后拼贴、碰撞、隆升形成现今的高原,又称为“造山的高原”(Dewe,2005;许志琴等,2006)。了解新生代喜马拉雅造山带的造山过程(包括构造变形、地壳深熔和变质作用等特征)一直以来是青藏高原研究重点之一。但要深入理解新生代以来喜马拉雅造山带的构造演化过程,需要了解印度-欧亚大陆碰撞前喜马拉雅地体可能经历的构造作用,需要了解喜马拉雅造山带的物质组成。

罗迪尼亚超大陆裂解之后,非洲、南美、澳大利亚、印度、阿拉伯、南极等陆块向南漂移,在新元古代末期汇聚拼合成冈瓦纳大陆,这些陆块之间的造山带统称为泛非期造山系,形成时间为570~510Ma(Cawood et al.,2007)。早期研究认为,喜马拉雅造山带古生代的岩浆作用和变质作用都属于泛非期(许志琴等,2005)。但越来越多的地质年代学数据都揭示了花岗质片麻岩的原岩形成年龄要明显小于泛非期,可能对应于原特提斯洋向冈瓦纳大陆北缘俯冲过程中的安第斯型造山作用(Kusky et al.,2003;Cawood et al.,2007;张泽明等,2008;董昕等,2009;Wang et al.,2012),主要表现为:(1)在喜马拉雅、拉萨和羌塘,发育大量~480Ma 的岩浆岩和变质岩(Foster,2000;Lee et al.,2000;Godin et al.,2001;Gehrels et al.,2003;DeCelles et al.,2004;Cawood et al.,2007;Lee and Whitehouse,2007;Quigley et al.,2008;Guynn et al.,2012;Zhang et al.,2012;Zhu et al.,2013);(2)寒武-奥陶统地层之间的角度不整合和奥陶统底砾岩(Kumar et al.,1978;Bagati et al.,1991;Le Fort et al.,1994;Wiesmayr et al.,1998;Gehrels et al.,2003;Myrow et al.,2006;刘文灿等,2002;周志广等,2004);(3)沉积相的突变(Bordet et al.,1971;Funakawa,2001)。综合以上地质事件,在Cawood et al.(2007)模型基础上,Wang et al.(2012)提出:530~500Ma,原特提斯洋向冈瓦纳大陆北缘俯冲;500~467Ma,俯冲板片断离,东羌塘微陆块(?)与东冈瓦纳大陆北缘发生碰撞;467Ma 之后,东冈瓦纳大陆北缘再次经历裂解作用,伴随堆晶辉长岩的产生,喜马拉雅地区转变为被动大陆边缘。但该模型不能解释以下观测结果,包括:(1)特提斯沉积岩和新生代淡色花岗岩含大量年龄为460~410Ma 碎屑锆石(Gehrels et al.,2011;高利娥,2014)或继承性锆石(Aikman et al.,2008;高利娥,2014);(2)喜马拉雅造山带高级变质岩的石榴子石中包裹U-Th-Pb 年龄为420~400Ma的独居石(Martin et al.,2007)。这些现象暗示着喜马拉雅造山带可能经历了加里东期构造作用。

为了进一步探讨喜马拉雅造山带古生代的构造热事件及其构造动力学意义,本文以马拉山-吉隆构造带中的花岗岩、变沉积岩和花岗质片麻岩为研究对象,来反演喜马拉雅造山带古生代的演化历史,完善东冈瓦纳大陆北缘的构造演化模型。

1 地质背景

喜马拉雅造山带呈E-W 向弧形展布(图1a),自北向南依次划分为4 个构造单元:特提斯喜马拉雅带(也称北喜马拉雅片麻岩穹窿,NHGD)、高喜马拉雅结晶岩系(HHCS)、低喜马拉雅岩系(LHS)和次喜马拉雅岩系(SHS)。它们之间的界限分别为藏南拆离系(STDS)、主中央逆冲断层(MCT)、主边界逆冲断层(MBT)。在喜马拉雅逆冲构造体系形成的同时,藏南地区经历了广泛的伸展作用,表现为(1)沿喜马拉雅北坡展布的藏南拆离系(STDS)和(2)南北向裂谷系(NSTR)。

北喜马拉雅穹窿内,沿东西向断续分布着一系列串珠状穹窿(图1a),不同的穹窿总体上显示了相似的特征,核部由高级变质岩和侵入其中的花岗岩组成,边部为浅变质或未变质的特提斯沉积岩系,两者之间是韧性拆离断层。高级片麻岩具有与高喜马拉雅结晶岩相似的矿物组成、地球化学特征以及年代学特征,被认为是高喜马拉雅结晶岩系折返过程中侵入到特提斯沉积岩,主要包括含石榴子石的花岗质片麻岩、眼球状花岗片麻岩、含石榴子石和矽线石的片麻岩、石榴角闪岩、石榴辉石岩、大理岩等。花岗质片麻岩的原岩形成于562~506Ma(Schärer et al.,1986;Harrison et al.,1997,1998;Lee et al.,2000;Lee and Whitehouse,2007;Quigley et al.,2008;Gao et al.,2012)。高喜马拉雅带内,淡色花岗岩东西向断续延伸约两千余千米,侵入高喜马拉雅结晶岩系中,或卷入STDS 下部宽阔的剪切带内。高喜马拉雅结晶岩系是一套原岩时代为古元古代-奥陶纪的高级变质岩,包括榴辉岩相-角闪岩相的片麻岩(变泥质岩和花岗质片麻岩)、变基性岩(榴辉岩、石榴辉石岩、石榴角闪岩)、钙硅质岩和大理岩。该结晶岩系在喜马拉雅带中段被称作聂拉木群,在东构造结为南迦巴瓦岩群。大量的年代学研究表明:高喜马拉雅结晶岩系中所获得的古生代岩浆和变质事件年代为530~460Ma(Cawood et al.,2007;Wang et al.,2012;许志琴等,2005;张泽明等,2008)。

马拉山-吉隆裂谷系是藏南裂谷系中重要一支,位于喜马拉雅造山带内部的吉隆县,雅鲁藏布江缝合带和主中央逆冲断层(MCT)之间,藏南拆离系(STDS)横贯其中(图1b)。横穿研究区的剖面表明,吉隆周缘地区可划分为5 个特征不同的构造-岩石单元,由北向南依次是:马拉山穹窿、晚新生代盆地、特提斯喜马拉雅沉积岩系(THS)、藏南拆离系(STDS)、高喜马拉雅结晶岩系(HHCS)。马拉山穹窿位于北喜马拉雅片麻岩穹窿的西部(图1a),由错布二云母花岗岩、马拉山二云母花岗岩和佩枯错复合淡色花岗岩体组成(图1b),其中二云母花岗岩岩体规模较大,从错布往东延伸到波绒穹窿的北侧,东西展布~10km,南北~500m。围岩为侏罗纪到白垩纪的泥质和钙质片岩(Pan et al.,2004)。佩枯错淡色花岗岩是一复合岩体,由含电气石淡色花岗岩、二云母花岗岩和含石榴石淡色花岗岩组成(Gao et al.,2013)。马拉山二云母花岗岩由多期次“量子行为”的岩脉汇聚而成,形成于16.9~17.6Ma(高利娥等,2013),是水致白云母部分熔融的产物(Gao and Zeng,2014)。STDS 为一大型韧性剪切带,在吉隆地区宽~8km,主要由眼球状花岗质片麻岩和面理化的淡色花岗岩组成,并被后期的淡色花岗岩体侵位(图1b),眼球状片麻岩的源岩为早古生代的花岗岩,形成于498.9 ±4.4Ma(Wang et al.,2012)。高喜马拉雅结晶岩系(HHCS)主要由眼球状片麻岩、黑云母花岗质片麻岩、变泥质岩、斜长角闪片麻岩、含透辉石的大理岩、石榴辉石岩等组成。呈岩脉、岩墙、岩枝状或透镜岩体产出的淡色花岗岩直接侵入到变泥质岩、花岗质片麻岩或含透辉石的大理岩中。

图1 藏南喜马拉雅造山带地质简图(a,据Zeng et al.,2009)和马拉山穹隆地质简图(b,据Yang et al.,2009)YTS-雅鲁藏布江缝合带;STDS-藏南拆离系;MCT-主中央逆冲推覆带;MBT-主边界逆冲推覆带;LH-小喜马拉雅岩系Fig.1 Simplified geologic map of the Himalayan orogenic belt,southern Tibet (a,after Zeng et al.,2009)and simplified geological map of the Malashan Gneiss Dome (b,after Yang et al.,2009)YTS:Yarlung-Tsangpo suture;STDS:Southern Tibet Detachment System;MCT:Main Center Thrust;MBT:Main Boundary Thrust;LH:Lower Himalayan Crystalline Sequence

为了探讨喜马拉雅造山带古生代的构造演化历史,追踪该造山带物质组成的来源,选择了马拉山片穹窿核部的石英片岩T0659-Q、高喜马拉雅结晶岩系内眼球状花岗片麻岩TZC09 和马拉山二云母花岗岩T0829 和T0830 样品,测定了这些样品的锆石U-Pb 同位素年龄和Hf 同位素组成,分析了眼球状花岗质片麻岩的地球化学组成。

2 分析方法

2.1 LA-MC-ICP-MS 锆石U-Pb 定年

为了查明眼球状花岗质片麻岩、石英片岩和二云母花岗岩的年代学特征,从样品TZC09、T0659-Q、T0829 和T0830 中挑选锆石,经过手工挑选、制靶和抛光,然后进行阴极发光(CL)和扫描电镜背散射(BSE)成像观察,揭示锆石不同生长域的细微特征。阴极发光成像在中国地质科学院地质研究所北京离子探针中心进行。在中国地质科学院地质研究所大陆构造与动力学国家重点实验室进行了BSE 图像和锆石内部包裹体的成分测试。在阴极发光和BSE 图像的指导下,选取锆石U/Pb 测试点。锆石U/Pb 同位素定年测试在中国地质科学院矿产资源研究所成矿作用与资源评价重点实验室进行。所用仪器为德国Finnigan 公司生产的Neptune 型激光多接收等离子体质谱(LA-MC-ICPMS),并结合美国New Wave 公司生产的UP 213nm 激光剥蚀系统,激光剥蚀所用斑束直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。U 和Th 含量以锆石标样M127(U:923 ×10-6;Th:439 ×10-6;Th/U:0.475)为外标进行校正。在测试过程中,每测定10 个样品点前后重复测量两次锆石标样GJ-1 和一次锆石标样Plesovice。分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal ADDIN EN.CITE ADDIN EN.CITE.DATA 完成(Liu et al.,2010),锆石年龄谐和图用Isoplot 3.0 程序获得。测试结果见表1。

2.2 全岩主微量元素地球化学测试

为了确定眼球状花岗质片麻岩的地球化学特征,进行了全岩主量和微量元素组成测试。主量及微量元素的测试在国土资源部国家地质实验测试中心进行。主量元素通过XRF(X 荧光光谱仪3080E)方法测试,分析精度为5%。微量元素和稀土元素(REE)通过等离子质谱仪(ICP-MS-Excell)分析,含量大于10 ×10-6的元素的测试精度为5%,而小于10×10-6的元素精度为10%。个别在样品中含量低的元素,测试误差大于10%。分析结果见表2。

图2 眼球状花岗质片麻岩(TZC09)中锆石的阴极发光照片(a)和LA-MC-ICP-MS U/Pb 定年谐和图(b、c)Fig.2 Cathodoluminescence (CL)showing the texture,spot,and respective age of zircon U/Pb dating (a)and U/Pb concordia diagram (b,c)for the augen granitic gneiss (TZC09)

表1 马拉山吉隆构造带中二云母花岗岩(T0829和T0830-B)、石英片岩(T0659-Q)和眼球状花岗质片麻岩(TZC09)的LA-MC-ICP-MS锆石U-Pb定年数据Table1 U-Pb isotopic data for the two-mica granite(T0829 and T0830-B), graohiteschist(T0659-Q) and augen graniticgneiss(TZC09) in the Malashan-GyirongZone

续表1Continued Table1

续表1Continued Table1

续表1Continued Table1

表2 眼球状花岗质片麻岩(TZC09 和T0807)的主量(wt%)及微量(×10 -6)元素地球化学特征Table 2 Major (wt%)and trace (×10 -6)element data for the augen granitic gneiss (TZC09 and T0807)

2.3 锆石Hf 同位素测试

锆石Hf 同位素测试是在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室Neptune 多接收等离子质谱和Newwave UP213 紫外激光剥蚀系统(LAMC-ICP-MS)上进行的,实验过程中采用He 作为剥蚀物质载气,剥蚀直径采用40μm,测定时使用锆石国际标样GJ1 和Plesovice 作为参考物质,分析点与U-Pb 定年分析点为同一位置,或者选择结构相似的点。相关仪器运行条件及详细分析流程见侯可军等(2007)。分析过程中锆石标准GJ1 和Plesovice 的176Hf/177Hf 测试加权平均值分别为0.282007 ±0.000007(2σ,n=36)和0.282476 ±0.000004(2σ,n =27),与文献报道值(Morel et al.,2008;Sláma et al.,2008;侯可军等,2007)在误差范围内完全一致。分析结果见表3。

3 数据及结果

3.1 锆石年代学特征

3.1.1 眼球状花岗质片麻岩( TZC09)

在该样品中,锆石呈自形长柱状,棱角清晰(图2a),长100~200μm,宽60~100μm,长宽比一般为2∶1。大部分锆石为核-幔-边结构,核部具有继承性特征,幔部为模糊化的振荡环带,为变质成因,边部为较窄的均一化灰白色(<30μm),表明这些锆石结晶之后经历了后期的变质作用。对不同结构的微区进行了锆石U-Pb 同位素测试。锆石核部U 和Th 浓度都较低,分别为27 ×10-6~181 ×10-6和25 ×10-6~146 ×10-6,Th/U 变化较大但较高,为0.81~1.04,206Pb/238U 年龄分布于846~995Ma 之间。模糊化振荡环带的锆石幔部,U 和Th 浓度也较低,95 ×10-6~650 ×10-6和6×10-6~106 × 10-6,大部分Th/U 比值为0.19~0.44,206Pb/238U 年龄分布广泛,在410~465Ma 之间,在U-Pb 谐和图上,集中分布于447Ma 处(图2b),TuffZir 年龄值为447.0+3.0/-5.3Ma(26 个测点,置信度为95%)(图2c),是眼球状花岗质片麻岩源岩结晶之后经历的变质作用的时间。在U-Pb 谐和线上还有另一组年龄集中于410Ma(图2b),可能代表了另一期变质作用时间。多数锆石边部较窄,较难于精确测定U-Pb 同位素年龄,3 粒边部较宽的锆石得到206Pb/238U 年龄为26.0~35.8Ma,表明眼球状花岗质片麻岩的确经历了喜马拉雅期变质作用,但可能由于变质作用过程中,流体有限,锆石重结晶再生长有限。

3.1.2 石英片岩( T0659-Q)

在该样品中,锆石呈自形长柱状,棱角清晰,长100~150μm,宽60~80μm,长宽比一般为2∶1。大部分锆石整体显示振荡环带,个别锆石含继承性的核部(图3a-f)。这些特征预示着石英片岩的原岩可能形成于岩浆作用强烈的活动大陆边缘,原岩物质未经历远距离的搬运作用。U-Pb 同位素测试主要集中在具有振荡环带的锆石,分析结果表明,U和Th 浓度变化较大,为215 ×10-6~3504 ×10-6和88 ×10-6~509 ×10-6,Th/U 变化也较大,0.06~0.64。剔除几个混合年龄点,206Pb/238U 年龄为371~457Ma,在Pb/U 谐和图上集中分布于一致线的374.8Ma 和447.0Ma 附近(图3g),TuffZir年龄值分别为374.8 +4.0/-1.5Ma(9 个测点,置信度为96.1%)和447.0 + 1.4/- 1.5Ma(26 个测点,置信度为95%)(图3h)。这两组年龄数据点在谐和线上相对集中分布,可信度高,代表了石英片岩的物源含有447.0Ma 和374.8Ma 的两期岩浆岩,对应于东冈瓦那北缘经历的两期构造岩浆事件。

图3 石英片岩(T0659-Q)中锆石的阴极发光照片(a-f)和LA-MC-ICP-MS U/Pb 定年谐和图(g、h)Fig.3 Cathodoluminescence (CL)showing the texture,spot,and respective age of zircon U/Pb dating (a-f)and U/Pb concordia diagram (g,h)for the quartz schist (T0659-Q)

3.1.3 二云母花岗岩( T0829)

在该样品中,锆石显示核-幔-边结构(图4a),但大部分锆石核-幔-边结构不完整。核部为振荡环带或均一化变质区域,幔部为均一化的灰白色,显示了变质作用的特征,边部显示典型的韵律生长环带,记录了二云母花岗岩的结晶年龄。为了了解二云母花岗岩的源岩经历的构造岩浆作用,对结构不同的微区进行了U-Pb 同位素组成测试。在振荡环带的核部,U 和Th 含量变化较大,分别在117 ×10-6~848 ×10-6和58 ×10-6~360 ×10-6之间,Th/U 比值较变化较大(0.27~0.97),但206Pb/238U 年龄相对集中,从431Ma 到438Ma,9 点TuffZir 年龄值为434.7 +1.9/-2.9Ma(置信度为96.1%,图4f)。韵律生长环带表明二云母花岗岩的源岩含来自~434.7Ma的岩浆成因的组分。与振荡环带的锆石岩浆核部相比,均一化的锆石变质核部U 和Th 含量较低,分别在165×10-6~1021 ×10-6和1 ×10-6~32 ×10-6之间,Th/U <0.05(图4g),206Pb/238U 年龄相对分散,从315Ma 到432Ma,其中大部分年龄集中于425~432Ma 之间,8 点TuffZir 年龄值为431.3 +0.6/-2.5Ma(置信度为93%,图4e)。这期年龄代表了二云母花岗岩源岩同时含有经历了~431.3Ma 变质作用的组分。这些数据表明,二云母花岗岩的源岩组分中含有大量经历了约430~440Ma 岩浆和变质作用的物质,可能表明喜马拉雅造山带在约430~440Ma 期间经历了一期重要的构造岩浆事件。

均一化的变质锆石幔部U 和Th 含量很低,分别在50 ×10-6~551 ×10-6和0~4 ×10-6之间,Th/U 比值较低(0.1~0.7),206Pb/238U 年龄相对分散,从17.0Ma 到20.5Ma(图4b),其中4 点年龄集中于17.0~17.7Ma 之间,TuffZir 年龄值为17.5 +0.2/-0.6Ma(置信度为87.8%,图4d)。对具有典型的韵律生长环带的锆石边部进行了16 点测试,U 含量较高(4484 ×10-6~16903 ×10-6),其中15 点没有得到207Pb/206Pb 年龄,无法进行计算,1 点得到的206Pb/238U 年龄为17.6 ±0.2Ma(图4a)。从以上这些数据分析表明:二云母花岗岩的源岩记录了约430~440Ma 期间的一期重要的构造岩浆事件和17.0~20.5Ma 的喜马拉雅期变质作用。

3.1.4 二云母花岗岩( T0830)

图4 马拉山二云母花岗岩(T0829)中锆石的阴极发光照片(a)和LA-MC-ICP-MS U/Pb 定年谐和图(b-g)Fig.4 Cathodoluminescence (CL)showing the texture,spot,and respective age of zircon U/Pb dating (a)and U/Pb concordia diagram (b-g)for the Malashan two-mica granite (T0829)

在样品T0830 中,大部分锆石显示核-边结构(图5a),核部为振荡环带,边部较窄(<30μm),显示典型的韵律生长环带。个别锆石具有以下特征:(1)多期继承性核部;(2)均一化灰白色幔部;(3)后期退火均一化边部。同样,对不同的结构微区进行了U-Pb 同位素组成测试。具有有振荡环带的岩浆核部U 和Th 含量较低,分别在259 ×10-6~4833 ×10-6和18 ×10-6~323 ×10-6之间,Th/U 比值变化较大(0.06~0.57),206Pb/238U 年龄相对分散,从108Ma 到487Ma,其中大部分年龄集中于436~458Ma 之间,5 点TuffZir 年龄值为445.3+12.9/-8.9Ma(置信度为93.6%,图5b),这表明,与上述样品相似,二云母花岗岩的源岩中包含~445.3Ma 的岩浆型继承锆石。2 点均一化的变质幔部206Pb/238U 年龄为436Ma 和438Ma,Th/U 较低(<0.06)。其中一颗幔部变质年龄为436Ma 的锆石,核部年龄为486Ma,可能与喜马拉雅造山带经历的两期古生代构造热事件相关。典型的韵律生长环带边部较窄,进行了13 点测试,其中9 点打在核部和边部的混合区域,2 点谐和度小于95%,剩余2 点得到的206Pb/238U 年龄为17.6Ma 和18.7Ma(图5a)。2 点均一化的变质边部206Pb/238U 年龄分别为20.8Ma 和21.8Ma。

图5 马拉山二云母花岗岩(T0830)中锆石的阴极发光照片(a)和LA-MC-ICP-MS U/Pb 定年谐和图(b、c)Fig.5 Cathodoluminescence (CL)showing the texture,spot,and respective age of zircon U/Pb dating (a)and U/Pb concordia diagram (b,c)for the Malashan two-mica granite (T0830)

3.2 锆石Hf 同位素组成

为了确定眼球状花岗质片麻岩的Hf 同位素组成特征,利用MC-ICP-MS 对TZC09 中锆石进行了原位Hf 同位素测试。个别锆石边部的176Yb/177Hf 比值偏高(表3),为了保证Hf 同位素比值的合理性,我们最终选择了176Yb/177Hf <0.20的测点进行探讨。测试结果显示模糊化振荡环带具有高度变化的Hf 同位素含量,εHf(t)为-15.9~-3.0(图6),地壳模式年龄tDM1对应于1216~1732Ma。个别均一化的灰白色变质边部(年龄<36Ma)具有正的εHf,εHf(t)=0.1~5.0,地壳模式年龄tDM1为893~1070Ma,可能表明眼球状花岗质片麻岩在新生代变质作用过程中有年轻的地壳流体加入。

3.3 全岩元素地球化学特征

图6 眼球状花岗质片麻岩(TZC09)的εHf(t)-年龄图解二云母花岗岩的数据来自于高利娥等,2013Fig.6 εHf(t)vs.age diagram for the augen granitc gneiss(TZC09)Data for two-mica granites are from Gao et al.,2013

从主量元素含量来看,眼球状花岗质片麻岩TZC09 和T0807 具有较高的SiO2(71.0%~75.9%),Al2O3(12.1%~14.5%)(图7a),但较低的CaO(0.8%~1.9%)(图7c)、FeO(0.8%~2.4%,图7b)、MgO、MnO 和TiO2(表2),A/CNK >1.1,K2O/Na2O >1.4%(图6d,除T0807-3 外)。总体来看,TZC09 和T0807 显示富钾过铝质的特征。在蜘蛛网图上(图8a),TZC09 和T0807 显示Ba、Sr、P、Ti、Nb 和Ta 的负异常。Zr/Hf 比值和Nb/Ta 比值都低于球粒陨石,分别为25.5~29.4 和8.6~14.8(表2)。Rb/Sr 比值较高,为1.6~5.7。在稀土元素配分图解中(图8b),TZC09 和T0807 富集轻稀土(LREE),重稀土(HREE)平坦,(Gd/Yb)N=0.8~2.2,Eu 为明显的负异常,Eu/Eu*=0.4~0.6。与喜马拉雅造山带多数眼球状花岗片麻岩相比,这两套眼球状花岗质片麻岩表现出类似的元素地球化学特征(图8)。

4 讨论及结论

4.1 马拉山-吉隆构造带志留纪构造热事件

图7 眼球状花岗质片麻岩(TZC09 和T0807)的Al2O3(a)、FeOT(b)、CaO(c)和K2O/Na2O 比值(d)与SiO2的关系图解Fig.7 Selected major oxides of Al2 O3(a),FeOT(b),CaO (c)and K2 O/Na2 O ratio (d)plotted against SiO2 for the augen granitic gneiss (TZC09 and T0807)

喜马拉雅造山带是新生代印度板块与欧亚板块碰撞的产物,近年来在藏南、藏东南、羌塘、拉萨、印度、尼泊尔、巴基斯坦等地相继报道了古生代岩浆作用和变质作用(Argles et al.,1999;Catlos et al.,2000,2002;Foster,2000;Godin et al.,2001;Gehrels et al.,2003,2006a,b;Booth et al.,2004;DeCelles et al.,2004;Kohn et al.,2004;Cawood et al.,2007;Lee and Whitehouse,2007;Liu et al.,2007;Quigley et al.,2008;Zhang et al.,2012;Zhu et al.,2012;许志琴等,2005;张泽明等,2008;董昕等,2009;蔡志慧等,2013),认为在印度-欧亚板块碰撞前,喜马拉雅地体经历了古生代构造岩浆事件。这些古生代花岗岩和花岗质片麻岩分布于北喜马拉雅片麻岩穹窿核部、藏南拆离系和高喜马拉雅结晶岩系内等,年龄集中在518~460Ma(Frank et al.,1977;Bhanot et al.,1979;Debon et al.,1981;Schärer and Allègre,1983;Trivedi et al.,1986;Pognante et al.,1990;Rao et al.,1990;Kaphle,1991;Arita and Sharma,1992;Einfalt et al.,1993;Decelles et al.,1998;Girard and Bussy,1999;Schelling,1999;Foster,2000;Lee et al.,2000;Marquer et al.,2000;Godin et al.,2001;Johnson et al.,2001;Miller et al.,2001;Gehrels et al.,2006a,b;Cawood et al.,2007;Liu et al.,2007;Lee and Whitehouse,2007;Wang et al.,2012)。对该套岩石,除了开展了大量地质年代学研究之外,有关岩石地球化学特征和变质作用性质等方面的研究程度较低。Wang et al.(2012)中对吉隆、定结和雅拉香波地区的花岗片麻岩进行了岩石学、地球化学、全岩Sr-Nd 和锆石Lu-Hf 同位素以及地质年代学的研究,认为高喜马拉雅和特提斯喜马拉雅中的早古生代眼球状片麻岩具有相同的物质和地球化学(元素和同位素)组成和侵位时代,二者可能属于同一套岩石,为原特提斯洋在古生代向冈瓦纳超大陆北缘俯冲过程中形成的岩浆岩。

上面年代学数据分析表明:(1)马拉山二云母花岗岩的锆石核部记录了U-Pb 年龄为445~431Ma 的构造事件(图4、图5),同时包括岩浆和变质成因的锆石;(2)马拉山穹窿内石英片岩的碎屑锆石主要为岩浆成因,年龄峰值为~447Ma和~375Ma(图3);(3)高喜马拉雅结晶岩系内眼球状花岗质片麻岩中锆石的变质年龄为~447Ma(图2)。对比以上不同来源的锆石年龄数据,可以看出在马拉山-吉隆构造带中,无论是淡色花岗岩的源岩、还是变杂砂岩,甚至花岗质岩石,都记录了时代为447~431Ma 的岩浆作用和变质作用,比已报道的古生代构造热事件晚30~60Myr。有趣的是,在二云母花岗岩T0830 中,一颗锆石记录了487Ma(岩浆成因)和436Ma(变质成因)两期继承性核部(图5a),进一步支持奥陶纪形成的振荡环带锆石在志留纪经历了变质重结晶作用,表明喜马拉雅造山带的确存在早奥陶纪和早志留纪两期的构造作用。

从全岩地球化学特征来看,眼球状花岗质片麻岩含有较高的SiO2(>69.9%),Al2O3、较低FeOT、MgO、MnO 和TiO2(图7)。所有样品的K2O/Na2O >1.0,A/CNK >1.1,这些特征表明眼球状花岗质片麻岩的源岩为过铝质富K 花岗岩。在蜘蛛网图上(图8a),这些岩石显示Ba、Sr、P 和Ti 的负异常,亏损Nb 和Ta,Zr/Hf 比值和Nb/Ta 比值都低于球粒陨石。从稀土元素含量来看(图8b),富集LREE,略亏损HREE,Eu 为明显的负异常。与喜马拉雅造山带多数奥陶纪眼球状花岗片麻岩相比,这两套眼球状花岗质片麻岩表现出类似的元素地球化学特征(图8)。在同位素组成特征上,眼球状花岗质片麻岩的大部分锆石的Hf 同位素比值(εHf(t)=-15.9~-3.0)高度变化(图6),稍微高于马拉山二云母花岗岩锆石核部的Hf 同位素比值(εHf(t)=- 18.3~-9.5),但与Wang et al.(2012)报道的早奥陶纪花岗岩相似。这表明这些花岗质片麻岩的原岩可能形成于相似的部分熔融作用或经历了相似的岩浆过程,同时这些花岗质片麻岩具有较低的Hf 同位素组成,可能来自于地壳岩石的部分熔融作用。通过以上分析对比,推断本文报道的早志留纪变质岩的源岩可能为奥陶纪花岗岩,在志留纪经历了变质作用,具有振荡环带的岩浆锆石发生变质重结晶作用,但没有改变全岩的地球化学特征。因此,喜马拉雅地区可能经历了两期古生代与碰撞造山相关的构造事件,时代相差至少50Myr。

图8 眼球状花岗质片麻岩(TZC09 和T0807)的原始地幔标准化蛛网图(a)和球粒陨石标准化稀土元素配分图(b)标准化值据Sun and McDonough,1989,蓝色实线阴影区域数据来自于Wang et al.,2012,黄色虚线阴影区域为雅拉香波穹窿内518Ma 花岗质片麻岩(未发表数据)Fig.8 Primitive mantle-normalized trace element (a)and chondrite-normalized rare earth element (b)distribution patterns for the augen granitic gneiss (TZC09 and T0807)Normalization values after Sun and McDonough,1989;The data in the blue shaded area are from Wang et al.,2012,and the yellow shaded area are granitic gneiss formed at 518Ma in the Yardoi dome(unpublished data)

4.2 喜马拉雅造山带古生代构造演化过程

东冈瓦纳大陆形成于中元古代,由澳大利亚、印度、马达加斯加、东南极和南非卡拉哈里地块拼合组成(Rogers and Santosh,2003;Cawood et al.,2007)。570~510Ma 期间,东冈瓦纳和西冈瓦纳拼合形成冈瓦纳超大陆,这阶段的一系列造山事件统称为泛非造山作用。喜马拉雅地区属于东冈瓦纳大陆的北缘,是在印度地体太古代基底上形成的元古代到第三纪沉积岩系(Cawood et al.,2007;Wang et al.,2012;Zhu et al.,2012;许志琴等,2005;张泽明等,2008;董昕等,2009),经历了古生代-新生代的构造作用后,最终在喜马拉雅期拼贴到欧亚大陆。已有研究揭示:(1)印度陆块和喜马拉雅地区普遍保存有古生代(寒武-奥陶纪)岩浆事件(Frank et al.,1977;DeCelles et al.,1998,2004;DeCelles,2000;Lee et al.,2000;Godin et al.,2001;Gehrels et al.,2003,2006a,b;Booth et al.,2004;Cawood et al.,2007;Lee and Whitehouse,2007;Liu et al.,2007;Quigley et al.,2008;Guynn et al.,2012)和变质作用(Argles et al.,1999;Catlos et al.,2000,2002;Foster,2000;Marquer et al.,2000;Godin et al.,2001;Kohn et al.,2004;Gehrels et al.,2006a,b;Zhang et al.,2012);(2)碎屑锆石记录了寒武-奥陶纪的构造热事件(DeCelles,2000;Hodges,2000;Kusky et al.,2003;Gehrels et al.,2006a;Myrow et al.,2010;Spencer et al.,2012;Zhang et al.,2012;张泽明等,2008;董昕等,2009);(3)存在奥陶统底砾岩(Kumar et al.,1978);(4)寒武-奥陶统之间的地层为角度不整合接触(Garzanti et al.,1986;Bagati et al.,1991;Brookfield,1993;Le Fort et al.,1994;Valdiya,1997;Bhargava and Bassi,1998;Wiesmayr et al.,1998;Gehrels et al.,2003;Myrow et al.,2006;周志广等,2004);(5)存在沉积相的突变(Bordet et al.,1971;Funakawa,2001)。以上这些地质事件表明喜马拉雅造山带及其由东冈瓦那大陆北缘衍生的地体都经历了早古生代构造作用,即:泛非造山作用结束之后,原特提斯洋向冈瓦纳主动大陆北缘俯冲,发生安第斯型造山作用(Kusky et al.,2003;Cawood et al.,2007;Wang et al.,2012;Zhu et al.,2012;张泽明等,2008;董昕等,2009;蔡志慧等,2013)。在此造山过程中,在印度、澳大利亚、伊朗、喜马拉雅、西羌塘、拉萨、宝山等地体或微陆块都经历了时代为530~490Ma 的岩浆作用,发育双峰式火山岩(Zhu et al.,2012)。但对该期造山作用终止的原因和时代没有形成统一的认识,目前存在以下四种模型:(1)在早奥陶纪全球板块发生结构性调整引起俯冲作用结束(Cawood and Buchan,2007);(2)拉萨、羌塘等微陆块不断增生到印度大陆边缘,俯冲带发生堵塞导致俯冲作用停止(Lister et al.,2001;Collins,2002);(3)东羌塘微陆块(?)与冈瓦纳大陆北缘500~467Ma 发生碰撞(Wang et al.,2012),引起俯冲板块断离造山作用结束;(4)东羌塘微陆块和华南陆块与拉萨地体490Ma 发生碰撞,引起板块断离,软流圈上涌(Zhu et al.,2012)。

马拉山-吉隆构造带记录了447~431Ma 的变质作用和岩浆作用,比先前认为的安第斯型造山作用晚30~60Myr。印度与欧亚陆陆碰撞引起的新生代同碰撞岩浆作用和变质作用发生在70~35Ma(Zhu et al.,2011;Zeng et al.,2011;Gao et al.,2012),新特提斯洋俯冲引起的弧岩浆作用发生在145~50Ma(Zhu et al.,2011),两者之前相差20~100Myr。由此推断喜马拉雅地区古生代构造事件持续时间也许比已有认识更长,在志留纪,可能发生微陆块与冈瓦纳大陆北缘的碰撞作用,除了导致喜马拉雅地体的志留纪岩浆活动外,还引发奥陶纪岩浆岩的变质作用。综合上述分析得出,喜马拉雅地体可能经历了(1)寒武纪-奥陶纪安第斯型造山作用,原特提斯洋向南俯冲,在东冈瓦纳大陆北缘形成一系列岩浆岩和变质岩,导致寒武-奥陶纪地层之间的角度不整合,形成奥陶纪底砾岩;和(2)志留纪(加里东期)陆陆碰撞作用,东冈瓦纳大陆北缘的周缘微陆块(羌塘微陆块?)在俯冲板片的牵引下,最终与东冈瓦纳大陆北缘发生碰撞作用,导致奥陶纪花岗岩发生变质作用,形成了志留纪花岗质片麻岩,同时下地壳物质发生部分熔融作用形成志留纪花岗岩。石炭纪的岩浆事件在郎县也有报道(Ji et al.,2012;董昕等,2010;王莉等,2013),是东冈瓦纳大陆北缘陆内裂解岩浆作用的记录(Veevers and Tewari,1995)。

除了上述报道之外,在青藏高原,加里东期构造岩浆事件具有广泛性,如:(1)羌塘地体明显受到晚加里东运动的影响,主要证据包括青藏高原羌塘中部日湾茶卡组的碎屑锆石包含有加里东期的年龄段(彭虎等,2013)和龙木错以东的五指山等地发现中上泥盆统不整合于奥陶系-志留系之上(夏军等,2009);(2)在青藏高原北部的柴北缘地体中,蓝片岩、榴辉岩和麻粒岩的变质时代为450~420Ma(Song et al.,2006;Mattinson et al.,2006,2009;Zhang et al.,2008,2009;Zhang et al.,2010;Yu et al.,2012)、北祁连包含有加里东期的俯冲杂岩(许志琴等,1994)。以上分析表明:喜马拉雅地区和青藏高原内部诸地体记录的加里东期岩浆作用和变质作用具有可对比性,对于恢复青藏高原古生代的古地理格架具有参考意义。

致谢 感谢张泽明研究员和戚学祥研究员仔细审阅稿件,提出众多建设性修改意见。

Aikman AB,Harrison TM and Lin D.2008.Evidence for Early(>44Ma) Himalayan Crustal Thickening,Tethyan Himalaya,southeastern Tibet.Earth and Planetary Science Letters,274(1-2):14-23

Argles TW,Prince CI,Foster GL and Vance D.1999.New garnets for old?Cautionary tales from young mountain belts.Earth and Planetary Science Letters,172(3):301-309

Arita K and Sharma MP.1992.Chemical characteristics of some granitic rocks in central Nepal.Bulletin of Department of Geology,2.Tribhuvan University,Kathmandu,1-9

Bagati TN,Kumar R and Ghosh SK.1991.Regressive-transgressive sedimentation in the Ordovician sequence of the Spiti (Tethys)basin,Himachal Pradesh,India.Sedimentary Geology,73(1-2):171-184

Bhanot VB,Bhandari AK and Singh VP.1979.Geochronological and geological studies on a granite of Higher Himalaya,northeast of Manikaran,Himachal-Pradesh.Journal of the Geological Society of India,20(2):90-94

Bhargava ON and Bassi UK.1998.Geology of Spiti-Kinnauer Himachal Himalaya.Burma:Geological Survey of India Memoir,1-210

Booth AL,Zeitler PK,Kidd WS,Wooden J,Liu YP,Idleman B,Hren M and Chamberlain CP.2004.U-Pb zircon constraints on the tectonic evolution of southeastern Tibet,Namche Barwa area.American Journal of Science,304(10):889-929

Bordet P,Colche M,Krummenacher D,Le Fort P,Mouterde R and Remy M.1971.Recherches geologiques dans I’Himalaya du Nepal,Region de la Thakkhola.Centre National de la Recherche Scientifique,Paris,279

Brookfield ME.1993.The Himalayan passive margin from Precambrian to Cretaceous times.Sedimentary Geology,84(1-4):1-35

Cai ZH,Xu ZQ,Duan XD,Li HQ,Cao H and Huang XM.2013.Early stage of Early Paleozoic orogenic event in western Yunnan Province,southeastern margin of Tibet Plateau.Acta Petrologica Sinica,29(6):2123-2140 (in Chinese with English abstract)

Catlos EJ,Sorensen SS and Harrison TM.2000.Th-Pb ion-microprobe dating of allanite.American Mineralogist,85(5-6):633-648

Catlos EJ,Harrison TM,Manning CE,Grove M,Rai SM,Hubbard MS and Upreti BN.2002.Records of the evolution of the Himalayan orogen from in situ Th-Pb ion microprobe dating of monazite:Eastern Nepal and western Garhwal.Journal of Asian Earth Sciences,20(5):459-479

Cawood PA and Buchan C.2007.Linking accretionary orogenesis with supercontinent assembly.Earth-Science Reviews,82(3-4):217-256

Cawood PA,Johnson MRW and Nemchin AA.2007.Early Palaeozoic orogenesis along the Indian margin of Gondwana:Tectonic response to Gondwana assembly.Earth and Planetary Science Letters,255(1-2):70-84

Collins WJ.2002.Nature of extensional accretionary orogens.Tectonics,21(4):1024

Debon F,Le Fort P,Sonet J,Liu GH,Jin CW and Xu RH.1981.About the Lower Paleozoic age of the Kangmar granite (Lhagoi Kangri plutonic belt,South Tibet,China).Terra Cognita Special Issue,14:67-68

Decelles PG,Gehrels GE,Quade J,Ojha TP,Kapp PA and Upreti BN.1998.Neogene foreland basin deposits,erosional unroofing,and the kinematic history of the Himalayan fold-thrust belt,western Nepal.Geological Society of America Bulletin,110(1):2-21

Decelles PG.2000.Tectonic implications of U-Pb Zircon ages of the Himalayan orogenic belt in Nepal.Science,288(5465):497-499 Decelles PG,Gehrels GE,Najman Y,Martin AJ,Carter A and Garzanti E.2004.Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis.Earth and Planetary Science Letters,227(3-4):313-330

Dewey JF.2005.Orogeny can be very short.Proceedings of the National Academy of Sciences of the United States of America,102(43):15286-15293

Dong X,Zhang ZM,Wang JL,Zhao GC,Liu F,Wang W and Yu F.2009.Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane,Tibetan Plateau:Petrology and zircon U-Pb geochronology.Acta Petrologica Sinica,25(7):1678-1694 (in Chinese with English abstract)

Dong X,Zhang ZM,Geng GS,Liu F,Wang W and Yu F.2010.Devonian magmatism from the southern Lhasa terrane,Tibetan Plateau.Acta Petrologica Sinica,26(7):2226-2232 (in Chinese with English abstract)

Einfalt HC,Hoehndorf A and Kaphle KP.1993.Radiometric age determination of the Dadeldhura granite,Lesser Himalaya,far western Nepal.Schweizerische Mineralogische und Petrographische Mitteilungen,73(1):97-106

Foster GL.2000.The pre-Neogene thermal history of the Nanga Parbat Haramosh Massif and the NW Himalaya.Ph.D.Dissertation.United Kingdom:Open University,1-345

Frank W,Thoni M and Purtscheller F.1977.Geology and petrography of Kulu-South Lahul area.Colloq.Int.Cent.Natl.Rech.Sci.,33:147-172

Funakawa S.2001.Lower Paleozoic Tethys sediments from the Kathmandu nappe,Phulchauki area,central Nepal.Journal of Nepal Geological Society,25:123-134

Gao LE,Zeng LS and Xie KJ.2012.Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes,Southern Tibet.Chinese Science Bulletin,57(6):639-650

Gao LE,Zeng LS,Hou KJ,Guo CL,Tang SH,Xie KJ,Hu GY and Wang L.2013.Episodic crustal anatexis and the formation of Paiku composite leucogranitic pluton in the Malashan Gneiss Dome,Southern Tibet.Chinese Science Bulletin,58(28- 29):3546-3563

Gao LE,Zeng LS,Wang L,Hou KJ,Guo CL and Tang SH.2013.Age and formation mechanism of the Malashan high-Ca two-mica granite within the Northern Himalayan Gneiss Domes,southern Tibet.Acta Petrologica Sinica,29(6):1995-2012 (in Chinese with English abstract)

Gao LE.2014.Anatetic events along the Malashan-Gyirong rift,southern Tibet and their implication for the tectonic evolution of the Himalayan orogenic belt.Ph.D.Dissertation.Beijing:Chinese Academy of Geological Sciences,1-365 (in Chinese with English summary)

Gao LE and Zeng LS.2014.Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome,southern Tibet.Geochimica et Cosmochimica Acta,130:135-155

Garzanti E,Casnedi R and Jadoul F.1986.Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya.Sedimentary Geology,48(3-4):237-265

Gehrels GE,Decelles PG,Martin A,Ojha TP and Pinhassi G.2003.Initiation of the Himalayan orogen as an Early Paleozoic thin-skinned thrust belt.GSA Today,13(9):4-9

Gehrels GE,Decelles PG,Ojha TP and Upreti BN.2006a.Geologic and U-Th-Pb geochronologic evidence for Early Paleozoic tectonism in the Kathmandu thrust sheet,central Nepal Himalaya.Geological Society of America Bulletin,118(1-2):185-198

Gehrels GE,Decelles PG,Ojha TP and Upreti BN.2006b.Geologic and U-Pb geochronologic evidence for Early Paleozoic tectonism in the Dadeldhura thrust sheet,far-west Nepal Himalaya.Journal of Asian Earth Sciences,28(4-6):385-408

Gehrels GE,Kapp P,DeCelles P,Pullen A,Blakey R,Weislogel A,Ding L,Guynn J,Martin A,McQuarrie N and Yin A.2011.Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen.Tectonics,30 (5 ): TC5016, doi: 10.1029/2011TC002868

Girard M and Bussy F.1999.Late Pan-African magmatism in the Himalaya:New geochronological and geochemical data from the Ordovician Tso Morari metagranites (Ladakh, NW India ).Schweizerische Mineralogische und Petrographische Mitteilungen,79(3):399-418

Godin L,Parrish RR,Brown RL and Hodges KV.2001.Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal:Insight from U-Pb geochronology and40Ar/39Ar thermochronology.Tectonics,20(5):729-747

Guynn J,Kapp P,Gehrels GE and Ding L.2012.U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications.Journal of Asian Earth Sciences,43(1):23-50

Harrison MT,Lovera OM and Grove M.1997.New insights into the origin of two contrasting Himalayan granite belts.Geology,25(10):899-902

Harrison TM,Grove M,Lovera OM and Catlos EJ.1998.A model for the origin of Himalayan anatexis and inverted metamorphism.Journal of Geophysical Research:Solid Earth,103(B11):27017-27032

Hodges KV.2000.Tectonics of the Himalaya and southern Tibet from two perspectives.Geological Society of America Bulletin,112(3):324-350

Hou KJ,Li YH,Zou TR,Qu XM,Shi YR and Xie GQ.2007.Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications.Acta Petrologica Sinica,23(10):2595-2604 (in Chinese with English abstract)

Hsü KJ,Pan G and Şengör AMC.1995.Tectonic evolution of the Tibetan Plateau:A working hypothesis based on the archipelago model of orogenesis.International Geology Review,37(6):473-508

Ji WQ,Wu FY,Chung SL and Liu CZ.2012.Identification of Early Carboniferous granitoids from southern Tibet and implications for terrane assembly related to the Paleo-tethyan evolution.The Journal of Geology,120(5):531-541

Johnson MRW,Oliver GJH,Parrish RR and Johnson SP.2001.Synthrusting metamorphism,cooling,and erosion of the Himalayan Kathmandu Complex,Nepal.Tectonics,20(3):394-415

Kaphle KP.1991.Geochemistry of Dadeldhura granite and its mineral potential.Journal of Nepal Geological Society,7:21-38

Kohn MJ,Wieland M,Parkinson CD and Upreti BN.2004.Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal.Earth and Planetary Science Letters,228(3-4):299-310

Kumar R,Shah AN and Bingham DK.1978.Positive evidence of a Precambrian tectonic phase in central Nepal,Himalaya.Journal of the Geological Society of India,19(11):519-522

Kusky TM,Abdelsalam M,Tucker RD and Stern RJ.2003.Evolution of the East African and related orogens, and the assembly of Gondwana.Precambrian Research,123(2):81-85

Le Fort P,Tongiorgi M and Gaetani M.1994.Discovery of a crystalline basement and Early Ordovician marine transgression in the Karakorum mountain range,Pakistan.Geology,22(10):941-944 Lee J,Hacker BR,Dinklage WS,Wang Y,Gans P,Calvert A,Wan JL,Chen WJ,Blythe AE and McClelland M.2000.Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints.Tectonics,19(5):872-895

Lee J and Whitehouse MJ.2007.Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircon ages.Geology,35(1):45-48

Lister GS,Forster MA and Rawling TJ.2001.Episodicity during orogenesis.Geological Society,London,Special Publications,184(1):89-113

Liu WC,Liang DY,Wang KY,Zhou ZG,Li GB and Zhang XX.2002.The discovery and geological implication of Ordovician in Kangmar area.Geoscience Frontiers,9(4):247-248 (in Chinese)

Liu Y,Siebel W,Massonne HJ and Xiao XC.2007.Geochronological and petrological constraints for tectonic evolution of the central Greater Himalayan Sequence in the Kharta area,southern Tibet.The Journal of Geology,115(2):215-230

Liu Y,Gao S,Hu Z,Gao C,Zong K and Wang D.2010.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths.Journal of Petrology,51(1-2):537-571

Marquer D,Chawla HS and Challandes N.2000.Pre-alpine high-grade metamorphism in High Himalaya crystalline sequences:Evidence from Lower Palaeozoic Kinnaur Kailas granite and surrounding rocks in the Sutlej Valley (Himachal Pradesch, India).Eclogae Geologicae Helvetiae,93(2):207-220

Martin AJ,Gehrels GE and DeCelles PG.2007.The tectonic significance of (U,Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal.Chemical Geology,244(1-2):1-24 Mattinson CG,Wooden JL,Liou JG,Bir DK and Wu CL.2006.Age and duration of eclogite-facies metamorphism,North Qaidam HP/UHP Terrane,western China.American Journal of Science,306(9):683-711

Mattinson CG,Wooden JL,Zhang JX and Bird DK.2009.Paragneiss zircon geochronology and trace element geochemistry,North Qaidam HP/UHP terrane,western China.Journal of Asian Earth Sciences,35(3-4):298-309

Miller C,Thöni M,Frank W,Grasemann B,Klotzli U,Guntli P and Draganits E.2001.The Early Palaeozoic magmatic event in the Northwest Himalaya,India:Source,tectonic setting and age of emplacement.Geological Magazine,138(3):237-251

Morel MLA,Nebel O,Nebel-Jacobsen YJ,Miller JS and Vroon PZ.2008.Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS.Chemical Geology,255(1-2):231-235

Myrow PM,Thompson KR,Hughes NC,Paulsen TS,Sell BK and Parcha SK.2006.Cambrian stratigraphy and depositional history of the northern Indian Himalaya, Spiti Valley, north-central India.Geological Society of America Bulletin,118(3-4):491-510

Myrow PM,Hughes NC,Goodge JW,Fanning CM,Williams IS,Peng SC,Bhargaca ON,Parcha SK and Pogue KR.2010.Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician.Geological Society of America Bulletin,122(9-10):1660-1670

Pan GT,Ding J and Yao DS.2004.Guidebook of 1∶1500000 Geologic Map of the Qinghai-Xizang (Tibet)Plateau and Adjacent Areas.Chengdu:Chengdu Cartographic Publishing House,1-48

Peng H,Li C and Xie CM.2013.Tracing the provenance of inherited zircon from Riwanchaka Group in the Middle Qiangtang terrane of the Tibet.Guangzhou:Abstract of 2013’s National Symposium on Petrology and Geodynamics,507-509 (in Chinese)

Pognante U,Castelli D,Benna P,Genocese G,Oberli F,Meier M and Tonarini S.1990.The crystalline units of the High Himalayas in the Lahul-Zanskar region (Northwest India):Metamorphic-tectonic history and geochronology of the collided and imbricated Indian plate.Geological Magazine,127(2):101-116

Quigley MC,Yu LJ,Gregory C,Corvino A,Sandiford M,Wilson CJL and Liu XH.2008.U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome,southern Tibet.Tectonophysics,446(1-4):97-113

Rao DR,Sharma KK,Sivaraman TV,Gopalan K,Trivedi JR and Himalaya K.1990.Rb/Sr dating and petrochemistry of Hant granite(Baramulla area) Kashmir Himalaya.Journal of Himalayan Geology,1:57-63

Rogers JJ and Santosh M.2003.Supercontinents in Earth history.Gondwana Research,6(3):357-368

Schärer U and Allègre CJ.1983.The Palung granite (Himalaya):Highresolution U-Pb systematics in zircon and monazite.Earth and Planetary Science Letters,63(3):423-432

Schärer U,Xu RH and Allègre CJ.1986.U-(Th)-Pb systematics and ages of Himalayan leucogranites,south Tibet.Earth and Planetary Science Letters,77(1):35-48

Schelling D.1999.Geological map of the eastern Nepal Himalaya at 1∶650000 scale.Journal of Asian Earth Sciences,AD9-AD20

Sláma J,Košler J,Condon DJ,Crowley JL,Gerdes A,Hanchar JM,Horstwood MSA,Morris GA,Nasdala L,Norberg N,Schaltegger U,Schoene B,Tubrett MN and Whitehouse MJ.2008.Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis.Chemical Geology,249(1-2):1-35

Song SG,Zhang LF,Niu YL,Su L,Song B and Liu DY.2006.Evolution from oceanic subduction to continental collision:A case study of the Northern Tibetan Plateau inferred from geochemical and geochronological data.Journal of Petrology,47(3):435-455

Spencer CJ,Harris RA and Dorais MJ.2012.Depositional provenance of the Himalayan metamorphic core of Garhwal region, India:Constrained by U-Pb and Hf isotopes in zircons.Gondwana Research,22(1):26-35

Sun SS and McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publications,42(1):313-345

Trivedi JR,Sharma KK and Gopalan K.1986.Widespread Caledonian magmatism in Himalaya and its tectonic significance.Terra Cognita,6:144

Valdiya KS.1997.Himalaya, the northern frontier of East Gondwanaland.Gondwana Research,1(1):3-9

Veevers JJ and Tewari RC.1995.Permian-Carboniferous and Permian-Triassic magmatism in the rift zone bordering the Tethyan margin of southern Pangea.Geology,23(5):467-470

Wang L,Zeng LS,Gao LE and Chen ZY.2013.Early Cretaceous high Mg#and high Sr/Y clinopyroxene-bearing diorite in the Southeast Gangdese batholith,Southern Tibet.Acta Petrologica Sinica,29(6):1977-1994 (in Chinese with English abstract)

Wang XX,Zhang JJ,Santosh M,Liu J,Yan SY and Guo L.2012.Andean-type orogeny in the Himalayas of south Tibet:Implications for Early Paleozoic tectonics along the Indian margin of Gondwana.Lithos,154:248-262

Wiesmayr G,Grasemann B,Draganits E and Frank F.1998.The main pre-Himalayan and Himalayan deformation phases in the Pin Valley(Spiti,Tethyan Himalaya,NW India).Geological Bulletin of University of Peshawar,31:212-213

Xia J,Wang LT,Zhong HM,Tong JS,Lu RK and Wang M.2009.Discovery of large-scale Silurian ancient delta deposition system in Longmu Co area,Qinghai-Tibet Plateau.China and its significance.Geological Bulletin of China,28(9):1267-1275 (in Chinese with English abstract)

Xu ZQ,Xu HF,Zhang JX,Li HB,Zhu ZZ,Qu JC,Chen DZ,Chen JL

and Yang KC.1994.The Zhoulangnanshan Caledonian subductive complex in the northern Qilian Mountains and its dynamics.Acta Geologica Sinica,68(1):1-15 (in Chinese with English abstract)

Xu ZQ,Yang JS,Liang FH,Qi XX,Liu FL,Zeng LS,Liu DY,Li HB,Wu CL,Shi RD and Cheng SY.2005.Pan-African and Early Paleozoic orogenic events in the Himalaya terrane:Inference from SHRIMP U-Pb zircon ages.Acta Petrologica Sinica,21(1):1-21(in Chinese with English abstract)

Xu ZQ,Yang JS,Li HB,Zhang JX,Zeng LS and Jiang M.2006.The Qinghai-Tibet Plateau and continental dynamics:A review on terrain tectonics,collisional orogenesis,and process and mechanisms for the rise of the plateau.Geology in China,33(2):221- 238 (in Chinese with English abstract)

Yin A and Harrison TM.2000.Geologic evolution of the Himalayan-Tibetan orogen.Annual Review of Earth and Planetary Sciences,28:211-280

Yu SY,Zhang JX and Pablo García DR.2012.Geochemistry and zircon U-Pb ages of adakitic rock from the Dulan area of the North Qaidam UHP terrane,North Tibet:Constraints on the timing and nature of regional tectonothermal events associated with collisional orogeny.Gondwana Research,21(1):161-179

Zeng LS,Gao LE,Xie KJ and Liu ZJ.2011.Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened lower continental crust.Earth and Planetary Science Letters,303(3-4):251-266

Zhang GB,Song SG,Zhang LF and Niu YL.2008.The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam,NW China:Evidence from petrology,geochemistry and geochronology.Lithos,104(1-4):99-118

Zhang GB,Zhang LF,Song SG and Niu YL.2009.UHP metamorphic evolution and SHRIMP geochronology of a coesite-bearing metaophiolitic gabbro in the North Qaidam,NW China.Journal of Asian Earth Sciences,35(3-4):310-322

Zhang JX,Mattinson CG,Yu SY,Li JP and Meng FC.2010.U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane,northwestern China:Spatially and temporally extensive UHP metamorphism during continental subduction.Journal of Metamorphic Geology,28(9):955-978

Zhang ZM,Wang JL,Shen K and Shi C.2008.Paleozoic circum-Gondwana orogens:Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis,Tibet.Acta Petrologica Sinica,24(7):1627-1637 (in Chinese with English abstract)

Zhang ZM,Dong X,Santosh M,Liu F,Wang W,Yiu F,He ZY and Shen K.2012.Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis,Tibet:Constraints on the origin and evolution of the north-eastern margin of the Indian Craton.Gondwana Research,21(1):123-137

Zhou ZG,Liu WC and Liang DY.2004.Discovery of the Ordovician and its basal conglomerate in the Kangmar area,southern Tibet:With a discussion of the relation of the sedimentary cover and unifying basement in the Himalayas.Geological Bulletin of China,23(7):655-663 (in Chinese with English abstract)

Zhu DC,Zhao ZD,Niu YL,Mo XX,Chung SL,Hou ZQ,Wang LQ and Wu FY.2011.The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth.Earth and Planetary Science Letters,301(1-2):241-255

Zhu DC,Zhao ZD,Niu YL,Dilek Y,Wang Q,Ji WH,Dong GC,Sui QL,Liu YS,Yuan HL and Mo XX.2012.Cambrian bimodal volcanism in the Lhasa Terrane,southern Tibet:Record of an Early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin.Chemical Geology,328:290-308

Zhu DC,Zhao ZD,Niu YL,Yildirim D,Hou ZQ and Mo XX.2013.The origin and pre-Cenozoic evolution of the Tibetan Plateau.Gondwana Research,23(4):1429-1454

附中文参考文献

蔡志慧,许志琴,段向东,李化启,曹汇,黄学猛.2013.青藏高原东南缘滇西早古生代早期造山事件.岩石学报,29(6):2123-2140

董昕,张泽明,王金丽,赵国春,刘峰,王伟,于飞.2009.青藏高原拉萨地体南部林芝岩群的物质来源与形成年代:岩石学与锆石U-Pb 年代学.岩石学报,25(7):1678-1694

董昕,张泽明,耿官升,刘峰,王伟,于飞.2010.青藏高原拉萨地体南部的泥盆纪花岗岩.岩石学报,26(7):2226-2232

高利娥,曾令森,王莉,侯可军,郭春丽,唐索寒.2013.藏南马拉山高钙二云母花岗岩的年代学特征及其形成机制.岩石学报,29(6):1995-2012

高利娥.2014.藏南马拉山-吉隆裂谷带深熔事件及其构造动力学意义.博士学位论文.北京:中国地质科学院

侯可军,李延河,邹天人,曲晓明,石玉若,谢桂青.2007.LA-MCICP-MS 锆石Hf 同位素的分析方法及地质应用.岩石学报,23(10):2595-2604

刘文灿,梁定益,王克友,周志广,李国彪,张祥信.2002.藏南康马地区奥陶系的发现及其地质意义.地学前缘,9(4):247-248

彭虎,李才,解超明.2013.青藏高原羌塘中部日湾茶卡组的物源探讨——来自碎屑锆石的研究.广州:全国岩石学与地球动力学研讨会摘要

王莉,曾令森,高利娥,陈振宇.2013.藏南冈底斯岩基东南缘早白垩世高镁-高Sr/Y 含单斜辉石闪长岩.岩石学报,29(6):1977-1994

夏军,王陆太,钟华明,童劲松,鲁如魁,王明.2009.青藏高原龙木错地区志留纪大型古三角洲沉积体系的识别及其意义.地质通报,28(9):1267-1275

许志琴,徐惠芬,张建新,李海兵,朱志直,曲景川,陈代璋,陈金禄,杨开春.1994.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学.地质学报,68(1):1-15

许志琴,杨经绥,梁凤华,戚学祥,刘福来,曾令森,刘敦一,李海兵,吴才来,史仁灯,陈松永.2005.喜马拉雅地体的泛非-早古生代造山事件年龄记录.岩石学报,21(1):1-21

许志琴,杨经绥,李海兵,张建新,曾令森,姜枚.2006.青藏高原与大陆动力学——地体拼合碰撞造山及高原隆升的深部驱动力.中国地质,33(2):221-238

张泽明,王金丽,沈昆,石超.2008.环东冈瓦纳大陆周缘的古生代造山作用:东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据.岩石学报,24(7):1627-1637

周志广,刘文灿,梁定益.2004.藏南康马奥陶系及其底砾岩的发现并初论喜马拉雅沉积盖层与统一变质基底的关系.地质通报,23(7):655-663

猜你喜欢

造山片麻岩喜马拉雅
黑龙江省造山带研究:关于洋壳俯冲造山和陆壳碰撞造山磨拉石的认识*
辽宁红透山铜锌矿床含矿岩系地球化学特征及找矿指示
金从何来?太古代造山型金矿床中的金来源于变质沉积岩
柴达木盆地北缘造山型金矿成矿条件及找矿潜力
巨人复活传 喜马拉雅
美女冒险家:“翼装”飞越喜马拉雅
给喜马拉雅找找茬
密怀隆起
土石混合介质碎石性质对土壤入渗和产流过程影响
不同种植条件下片麻岩新成土壤硝态氮分布特征