APP下载

小学数学变式练习教学探究

2015-07-06冯铖

新课程·上旬 2015年5期
关键词:变换变式解决问题

冯铖

摘 要:所谓变式就是使提供给学生的各种感性材料不断变换其表现形式,使非本质属性变化,本质属性恒在。变式在小学数学教学中运用十分广泛,可以在概念形成阶段提供,也可以在知识巩固深化阶段以练习的形式呈现。

关键词:变式;变换;解决问题

所谓变式就是使提供给学生的各种感性材料不断变换其表现形式,使非本质属性变化,本质属性恒在。变式在小学数学教学中运用十分广泛,可以在概念形成阶段提供,也可以在知识巩固深化阶段以练习的形式呈现。通过变式练习,能使学生排除非本质属性的干扰而看清本质,不仅能深化所学的知识,而且还能培养学生灵活运用所学的知识解决实际问题的能力。那么,教师怎样设计变式练习呢?笔者有以下几点浅见,愿与同仁共研。

一、变换叙述形式

基本题:24的约数有 。

变式题:(1)24能被 整除;(2) 能被24整除;(3)24是 的倍数。

这三道变式题变换了叙述形式,但其约数的本质“必须整除”始终恒在。通过解答,使学生不只习惯于解答标准叙述形式的题目(基本题),而且能灵活地排除变式的非本质属性的干扰,并能正确地解答题目,从而对约数的概念理解得更加深刻,同时也培养了学生灵活运用知识的能力。又如:

基本题:黄花有5朵,红花比黄花多3朵,红花有多少朵?

变式题:黄花有5朵,黄花比红花少3朵,红花有多少朵?

变式题中的“黄花比红花少3朵”也就是“红花比黄花多3朵”。叙述学生变了,但“求比一个数多几的数”这类应用题(即解决问题)的本质属性不变,其数量关系仍然是“较小数+差数=较大数”,因此用加法计算,这种变式题不仅能有效地克服学生“见多就加,见少就减”,防止学生片面地根据一些固定的词语来选择算法,而且能培养学生认真审题,提高解决问题的能力。

二、变换图形的位置或条件

这类变式题的设计在几何初步知识中经常出现和使用,变式题中多余的条件“7”的设计,可以帮助学生更好地理解三角形面积计算公式,能克服学生乱套公式的坏习惯。

三、变换已知条件的叙述顺序

基本题:红星小学少先队员种树,每排种6棵,种了4排,一共种了多少棵?

变式题:红星小学少先队员种了4排树,每排种6棵,一共种了多少棵?

变式题条件叙述顺序上的变化,使已知条件出现了的数据与列式次序不一致,会使学生错列成4×6=24(棵)或4×6=24(排)的错误,这就要求学生必须认真审题,仔细分析数量关系,只有在明确求“4个6是多少”以后,才会纠正其错误。又如,文字题:

基本题:25与20的和除以它们的差,商是多少?

变式题:25与20的差除它们的和,商是多少?

变式题变换了条件的叙述顺序,旨在考查学生对“除”和“除以”的理解和掌握。

四、变换题目中的已知条件

1.将题目中的某一已知条件隐藏

基本题:把90°角按1∶2分成两个锐角,这两个锐角各是多少度?

变式题:直角三角形两个锐角的度数比是1∶2,这两个锐角的度数各是多少度?

这样设计的变式解决问题,表面上看是只有一个已知条件,如果不认真分析思考,学生的思维就会受阻,错误地认为条件不够,无法进行解答,这样设计旨在使学生从某些词语的背后发现蕴含的另一个已知条件,提高学生解答问题的能力。

2.将题目中的直接条件变换为间接条件

基本题:育才小学三年级有90人,四年级的人数比三年级多6人,三、四年级共有多少人?

变式题:(1)育才小学三年级有2个班,每班45人,四年级的人数比三年级多6人,三、四年级共有多少人?(2)育才小学三年级有90人,比四年级的人数比少6人,三、四年级共有多少人?

用这种方法设计的变式题,在解决问题的教学中经常运用,变式题(1)和(2)与基本题比较,虽然问题不变,但由于条件变换,将一步计算的解决问题扩展成二、三步计算的解决问题,从而使学生能认清复合解决问题的结构特征。

五、变换所求问题

基本题:光明小学五年级有男生120人,女生100人,男生人数是女生人数的几分之几?在学生正确的解答后,教师变换问题:

(1)女生是男生的几分之几?(2)男生比女生多几分之几?(3)女生比男生少几分之几?(4)男、女生人数各占五年级人数的几分之几?

通过解答和比较改变问题的变式题,使学生对“求一个数是另一个数的几分之几”解决问题有较深的认识,从而加深对这类解决问题的理解,培养学生思维的深刻性。

六、变化已知条件和所求条件——问题

基本题:长方形的长6厘米,宽5厘米,它的面积是多少?

变式题:长方形的面积是30厘米,长6厘米,宽是多少?

这种变式题,其解答思维方向是逆向的,经常设计这种练习供学生解答,不仅能深化所学的数学知识,而且还能培养学生的逆向思维能力。

七、变换题目叙述事理

基本题:一项工程,甲独做要8小时完成,乙独做要10小时完成,甲、乙两人合做要多少小时完成?

变式题:从甲地到乙地,客车要8小时,货车要10小时,现两车从甲、乙两地相向而行,几小时相遇?

变式题的叙述事理虽然发生了变化,但其数量关系与基本题相同。通过解答,可以使学生对工程问题的数量关系获得更为广泛的概念和理解。

八、变换数据、运算符号或计算步骤

这种方法的设计常常用于四则混合运算的教学。

基本题:0.32+7-2-0.32

变式题:(1)0.32×7+2×0.32(变换运算符号);(2)0.32×7+2×0.25(变换数据和运算符号);(3)0.32×(7+2)×0.25

变式题1与基本题一样,都能运用运算定律进行简算。这时,小学生往往会产生“简便计算”的心理定势,对这些貌似能简算,但实际不能简算的题目,学生极易失误;变式题2的设计目的是排除学生多余成分的干扰,防止“7+2”先求和;变式题3添上括号变换了运算顺序,其目的除了与变式题2进行对比外,还要引导学生灵活地计算。教师设计此种“一题多变”的变式题既能避免试题形式单调,又能使学生在“一题多变”练习中排除各种干扰,自觉认真审题,不断提高学生的计算能力。

猜你喜欢

变换变式解决问题
联系实际 解决问题
助农解决问题增收致富
在解决问题中理解整式
一道拓广探索题的变式
聚焦正、余弦定理的变式在高考中的应用
课后习题的变式练习与拓展应用
化难为易 解决问题
论高中数学中的三角函数变换
问题引路,变式拓展