机械加工中影响表面物理机械性能变化因素分析
2015-07-04赵文英李晓妍
赵文英 李晓妍
【摘 要】机械加工中的表面物理机械性能的变化对其表面质量有很大影响。
【关键词】机械加工;表面物理;机械性能;变化因素
一、机械加工成件的表面质量跟产品性能的关系
一般来说无论什么机械零件的使用都是难免有损耗的,这种损耗是无法避免的,只要零件在运转,只要机械在运转就会有,然而这种损耗并不是一下子出现的而是在不断的日常中的运转和使用中日益累积造成的,而零件的损耗会随着时间的推移分为不同的阶段,在进行研究的时候我们一般会将整个损耗过程分为初期磨损,正常磨损及剧烈磨损三个不同的阶段,零件的使用时间越长这三个阶段的特征就会越明显,而三个阶段设备的零件磨损程度更是不一样。对于机械零件来说,表面越光滑,设备对于零件的磨损就会越小,相对的其抗磨损的能力也就更强,但是考虑到润滑油的存储也不能过于光滑,需要保持一个相对稳定的度,还有就是往往一个零件表面的光滑程度也是能够衡量这个零件是否能够具有较强的抗腐蚀性的重要标准,越光滑抗腐蚀能力就越强。
二、机械加工中影响表面物理机械性能变化因素分析
1、表面层的冷作硬化
表面层显微硬度的变化,是加工时塑性变形引起的冷作硬化和切削热引起的金相組织变化综合作用的结果。加工过程中表面层产生的塑性变形使晶体间产生剪切滑移,晶格严重扭曲,并产生晶粒的拉长、破碎和纤维化,引起材料的硬化,其强度和硬度均有所提高,这种变化的结果即形成冷作硬化。
(1)冷作硬化的特点。变形抵抗力提高(屈服点提高),塑性降低(相对延伸率降低)。金属冷作硬化的结果,使金属处于高能位不稳定状态,只要一有条件,金属的冷硬结构本能地向比较稳定的结构转化。这些现象统称为弱化(回复)。机械加工过程中产生的切削热,将使金属在塑性变形中产生的冷硬现象得到恢复。由于金属在机械加工过程中同时受到力因素和热因素的作用,机械加下后表面层金属的最后性质取决于强化和弱化两个过程的综合。表面层的硬化程度决定于产生塑性变形的力、变形速度及变形时的温度。力愈大,塑性变形大,则硬化程度严重。变形速度快,塑性变形不充分,硬化程度减弱。(2)影响冷作硬化的因素。①刀具:刀具刃口圆角和后刀面磨损量增加时,冷硬层深度和硬度也随之增高。②切削用量:切削速度增大时,刀具与工件接触时间短,塑形变形程度减小,硬化层深度和硬度都有所减小。进给量增大时,切削力增大,塑性变形也增大,硬化现象加强;但当进给量过小,由于刀刃圆弧在加工表面单位长度上的挤压次数增多,硬化程度也会增大。③工件材质:工件材料的硬度愈低,塑形愈大时,切削后的冷硬现象愈加重。
2、加工表面的金相组织变化
切削加工中,由于加工所消耗的能量绝大部分转化为热能,因此在加工区,尤其在加工表面温度将上升。温度升高到超过金相组织变化的临界点时,就会引起金相组织变化。对于一般的切削加工,切削热大部分被切削带走,加工表面温度较低,其影响不甚严重。但对单位切削功率消耗特别多的一些加工方法,就会出现表面层的金相组织变化。磨削的单位切削力比其它加工方法大数十倍,其切削速度又特别高,所以磨削的单位切削功率消耗远远大于其它加工方法。如此大的功率消耗绝大部分转化为磨削热,其中大部分热量传给工件,引起工件表面金相组织变化。影响磨削烧伤的因素主要有:
(1)磨削用量。磨削深度。当磨削深度增加时,无论工件表面温度,还是表面层下不同深度的温度,都随之升高。故烧伤会增加。工件纵向进给量。纵磨时工件纵向进给量增加,工件表面温度及表层下不同深度的温度都会降低,烧伤将减少。但为弥补纵向进给量增大而导致表面粗糙度增大的缺陷,可采用较宽的砂轮。工件速度。当工件速度增加时,磨削区的温度会上升,其影响与磨削深度相比则小得多。但提高工件速度,会导致工件表面更为粗糙。为弥补此缺陷,一般可提高砂轮速度。
(2)冷却方法。采用切削液带走磨削区的热量可以避免烧伤。常用的冷却方法效果较差,由于砂轮高速旋转时,圆周方向产生强大气流,使切削液很难进入磨削区。如图1所示,切削液不易进入磨削区AB,且大量倾注在已经离开磨削区的加工面上,这时烧伤早已产生。为改善冷却方法,可采用图2所示的内冷法,即将经过严格过滤的冷却液通过中空主轴引进砂轮的中空腔内。由于离心力的作用,将切削液沿砂轮孔隙向四周甩出,直接冷却磨削区;另外,冷却液喷嘴加装空气挡板可减轻砂轮圆周表面的高压气流作用使冷却液易进入磨削区(如图3)。
3、加工表面层的残余应力
工件经机械加工后,其表面层都存在残余应力。残余压应力可提高工件表面的耐磨性和受拉应力时的疲劳强度,残余拉应力的作用正好相反。若拉应力值超过工件材料的疲劳强度极限时,则使工件表面产生裂纹,加速工件的损坏。
(1)产生残余应力的原因
①冷塑性变形的影响机械加工时,在加工表面金属层内有塑性变形发生,使表面金属的比容加大,体积膨胀,则因受基体材料制约就会在表层产生残余压应力,而在里层金属中产生残余拉应力。
②热塑性变形的影响
机械加工时,切削区会有大量的切削热产生,表面层与里层金属间产生很大的温度梯度。冷却时,表面层收缩从而形成较大的残余拉应力,而在里层金属中产生残余压应力。
③金相组织的影响
切削时的高温会引起表面层金相组织变化。由于不同金相组织有不同的密度,亦具有不同的比容。
当表层金属体积膨胀,则因受基体材料制约就会在表层产生残余压应力;相反,则表层产生残余拉应力。残余拉应力超过材料屈服极限时,产生表面裂纹。各种金相组织中马氏体比重最小,奥氏体比重最大。
以淬火钢磨削加工为例说明表面变相所引起的残余应力。
淬火钢原来的组织是马氏体,磨削加工后,表面层可能回火转化为接近珠光体的屈氏体或索氏体,因体积缩小,表面层产生残余拉应力,里层产生残余压应力。如果表层出现超过750-800℃的高温,则除了稍深处有回火现象外,表面由于冷却速度快还可能出现二次淬火,则表面层产生二次淬火马氏体,其体积比里层的回火组织大,因而表层产生压应力,里层产生拉应力。
(2)影响残余应力的工艺因素
影响残余应力的工艺因素主要是刀具的前角、切削速度以及工件材料的性质和冷却润滑液。具体的情况则看其对切削时的塑性变形、切削温度和金相组织变化的影响程度而定。一般来说,低速车削时,切削热的作用起主导作用;高速切削时,表层金属的淬火进行得较充分,金相组织变化因素起主导作用。一般来说,工件材料的强度越高、导热性越差、塑性越低,在磨削时表面金属产生残余拉应力的倾向就越大。
三、提高机械加工质量
1、对症下药,那些部件容易出现误差要认真对待,选用质量过硬的部件,比如夹具,刀具和一些其他的基本的工具的精度和刚度,控制好温度以免造成误差,在日常的维护工作当中要及时的发现误差,找到根本原因进行改正,精密的加工更是需要提升整个机床的精度以达到相应的要求。
2、误差补偿发现误差之后通过人为制造出相应的误差进行补偿使得部件达到相应的标准。
3、分化误差,出现一定程度上的误差之后需要把原始的误差进行分化,找出误差的反应出的基本情况及基本规律特征,也就是说把风险的统一调整划分,将误差类别想死的工件集中到一起,使得误差的影响分散到几个不同的部分,分化误差造成的影响。
结束语
综上所述,在进行工件的加工过程中,机械加工表面的质量对机械零件的质量等有着很深的影响,这需要我们在机床加工过程中要根据不同的机械产品加工要求,采取不同的加工手段与措施,促进机械产品质量的提高。
参考文献:
[1]瞿继九.浅析影响机械加工精度的因素[J].价值工程,2010(35).
[2]康政.影响机械加工质量因素的控制[J].科技传播,2012(08).
[3]何成奎.浅析影响机械加工精度的主要因素[J].农业开发与装备,2011(02).