APP下载

吉林省下三叠统卢家屯组LA-ICP-MS锆石U-Pb定年及其地质意义

2015-07-03聂立军于宏斌张建泽

关键词:碎屑锆石砂岩

聂立军,于宏斌,张建泽,王 聪,李 栋,李 阳

吉林省区域地质矿产调查所,长春 130022



吉林省下三叠统卢家屯组LA-ICP-MS锆石U-Pb定年及其地质意义

聂立军,于宏斌,张建泽,王 聪,李 栋,李 阳

吉林省区域地质矿产调查所,长春 130022

卢家屯组按岩性组合自下而上分为影背山砾岩段、漏斗山杂色岩段、杨树河子黑色岩段,前人采集到的Palaeanodonta-Palaeomutela动物群、Pleuroneia?sp.和叶肢介等生物化石组合指示时代为二叠纪。本次对九台市影背山--双顶山卢家屯组建组剖面下、中、上段进行了系统的碎屑锆石U-Pb同位素年代学研究,证实卢家屯组由下至上存在3个最小锆石年龄峰值,分别为(283.4±7.9)、(262.4±3.9)、(255.5±5.8) Ma,确定了卢家屯组的上限为晚二叠世。根据卢家屯组中碎屑锆石存在1 800 Ma和2 500 Ma左右的典型华北板块基底年龄,认为华北板块北缘与其北侧地块群最终闭合时间应为P3-T1。

卢家屯组;下三叠统;碎屑锆石;LA-ICP-MS锆石U-Pb定年;吉林省

0 引言

卢家屯组作为吉林省目前唯一确认的下三叠统地层[1],其构造环境及构造意义在区域地质构造研究中占有重要的位置。而二叠纪--三叠纪这一时间段对于吉林省乃至整个东北亚地质构造演化意义重大。很多学者将其和华北板块北缘与其北侧地块的碰撞拼贴的演化过程及最终的闭合时间联系在一起,并有如下几种观点:吉黑复合造山带古亚洲洋构造体制结束的综合标志时间为250~230 Ma[2];古亚洲构造域一部分的古亚洲洋结束于中三叠世[3];华北北部晚古生代末--中生代初正处在2个构造域叠加的重要时期[4];兴蒙造山带东段的西拉木伦河--长春--延吉板块缝合带应于二叠纪末期最终闭合[5]。

最新的年代学研究[6]表明,现划分的华北板块北缘以北地区出露的蛇绿岩的形成时代多集中在中二叠世:如温都尔庙蛇绿岩年龄为(260±12) Ma,半拉山蛇绿岩年龄为256 Ma。此外,西拉木伦河北部杏树洼蛇绿岩带硅质岩中放射虫的时代为二叠纪[7];古亚洲洋在华北板块以北地区的最晚闭合位置为索伦--延吉缝合带,自西向东闭合时间为260~250 Ma[8];西拉木伦河沿岸双井地区同碰撞花岗岩体侵位时间主要集中在晚二叠世--早三叠世[9];西拉木伦河缝合带东段吉中地区同碰撞花岗岩、碰撞相关的变质事件的年龄也主要集中在二叠纪末--早三叠世[10-11]。可见,二叠纪--三叠纪是华北板块北缘与其北侧地块碰撞拼贴演化的关键时期。但对于二者之间的具体演化过程和模式,不同学者对它们的认识有所不同。针对这一问题,笔者从碎屑锆石年代学的角度,对卢家屯组碎屑岩进行碎屑锆石年代学研究,以进一步对古亚洲洋的最终闭合时间和华北板块与蒙古陆块的最终碰撞时间等问题进行探讨。

1 区域地质概况

研究区位于兴蒙显生宙造山带东段,大黑山条垒东北端。西侧为松辽地块,由四平--德惠断裂与条垒相隔;东侧有伊通--依兰伸展-走滑复合盆地,其内沉降了巨厚层的新生代陆相碎屑岩,并且基性火山活动强烈,该盆地与条垒由伊通--依兰断裂带的西支断裂相隔。

研究区内最老地层为上二叠统杨家沟组,分布于南侧鸡冠山一带,主要岩性组合为含砾砂岩、黑灰色粉砂岩、细砂岩、板岩等,其内产海相瓣鳃、苔藓虫和陆相瓣鳃及植物化石,具有海陆交互相特征,被上三叠统西土山组角度不整合覆盖和早侏罗世花岗岩侵入;其次为下三叠统卢家屯组(图1),分布面积较大,被上三叠统西土山组或下白垩统营城组角度不整合覆盖,是本次研究的地质体。上三叠统西土山组分布于大孤家子南,主要为一套中--酸性火山岩夹少量碎屑岩,底部为砾岩,被下白垩统营城组角度不整合覆盖及早侏罗世花岗岩侵入。西土山组上部为下白垩统营城组火山岩和古近系碎屑岩及第四系沉积物。

侵入岩主要为一套中生代侵入岩,主要有早侏罗世石英闪长岩、花岗闪长岩、二长花岗岩和早白垩世碱长花岗岩。

图1 九台市沐石河--卢家地质图Fig. 1 Geological map of the Mushihe-Lujia in Jiutai

2 卢家屯组地质特征

卢家屯组分布于吉林省九台市卢家屯、李家屯、永安屯、大孤家子影背山等地,呈北东东方向展布,被早侏罗世二长花岗岩侵入,构造单元属大黑山地垒。1959年九台县工业局九台地质队曾将该套地层定为波泥河组。吉林地质局、长春地质学院合办队1975年将该地层下部杂色砂岩、砾岩归入一拉溪组,上部含化石的黑色粉砂岩、泥岩归入杨家沟组,时代为晚二叠世。1980年吉林省地质矿产局区域地质调查所开展1∶20万舒兰县幅区域地质调查期间,在九台市影背山、杨家沟、双顶山发现了大量的动、植物化石,其中瓣鳃类有Palaeanodontatungussica(Ragozin)、P.opinata(Ragozin)、P.obrutschevi(Ragozin),叶肢介有CorniasubquadrataZaspelove、C.lutkevichiZasp、C.elataZasp,植物有Neocalamitessp.、Cladophlebissp.、Taeniopterissp.等,首次提出在华北板块北缘有早三叠世地层存在, 并建立了卢家屯组。卢家屯组可划分下、中、上三段:下段(影背山砾岩段)以粗碎屑岩为主,构成砾岩-含砾砂岩-砂岩基本层序,砾石成分复杂,沉积物以杂色为主,厚度上千米,从沉积物颗粒分析,反映为从山麓相向河流相发展阶段堆积的产物,明显具磨拉石建造特征;中段(漏斗山杂色岩段)以杂色石英长石粉砂岩、泥岩互层,底部为紫色砂、砾岩;上段(杨树河子黑色岩段)以细碎屑为主,由砾岩、砂岩、泥岩(夹泥质岩及石膏)构成两个韵律层,并产动、植物化石,沉积物以黑色为主夹紫色,厚度逾千米,反映湖相阶段形成。

卢家屯组还产有丰富的双壳类化石:Palaeanodontatungussca(Ragozin)、P.opinata(Ragozin)、P.obrutchevi(Ragozin)等见于俄罗斯西伯利亚库兹巴斯的库兹涅茨克盆地三叠系下统马里采夫组和通古斯盆地三叠系下统卡尔文昌组,与Ferganoconcha伴生;Ferganoconcha见于俄罗斯远东地区、中国东北的中生代地层中,至今没有在二叠纪地层中发现;叶肢介CorniasubquadrataZaspelove、C.lutkevichiZasp、C.elataZasp 等是前苏联乌拉尔西北部伯朝拉盆地中早三叠世地层中的重要分子。而从介形虫Langdaia?sp.、Sphenotasp.、Sphenobaielasp. 等的组合面貌看,其时代区限是在早三叠世至早中侏罗世之间的组合特点,其中Langdaia?sp.见于贵州朗岱三叠系下统飞仙关组。植物Palacalamitessp.、Neocalamitessp.、Cladophlebissp.、Taeniopterissp.、Thinnfeldiasp.、Podozamitessp.等化石保存欠佳,无法鉴定到种,其组合除Palacalamites sp.外,常见于三叠纪--侏罗纪。而Paracalamitessp. 是晚期安加拉植物群的代表性分子,时代一般为晚二叠世,除卢家屯组外没有在吉林省其他中生代地层中发现过。

纵观卢家屯组生物化石特征,既有二叠纪标准生物分子(Paracalamitessp.),又有早三叠世--侏罗纪存在的生物化石,时代意义确定还有待商榷。笔者也尝试从碎屑锆石测年统计学研究对其形成时代进行探讨,力求从另一种思路对生物化石依据不充分或哑地层进行年代学研究。

图2 九台市影背山--双顶山下三叠统卢家屯组剖面图(Pm003)Fig.2 Profile of the lower Triassic Lujiatun Formation at Yingbeishan-Shuangdingshan in Jiutai City,Jilin Province(Pm003)

3 同位素样品的采集

在对卢家屯组建组剖面修测(图2)时,于影背山砾岩段2层(东经126°14′13″,北纬44°13′17″)、漏斗山杂色岩段17层(东经126°14′13″,北纬44°14′44″)及杨树河子黑色岩段24层(东经126°13′53″,北纬44°17′04″)分别采集3件样品:Pm003-2,野外岩石定名为紫灰色厚层复成分砾岩,其单层厚度为50~60 cm,砾石成分复杂,有花岗岩、石英脉、中细粒砂岩及紫色粉砂岩,砾石分选差,最大者8.0 cm,小者0.5 cm,砾石磨圆差,多为棱角状和次棱角状,硅质胶结;Pm003-17,野外定名为灰色中薄层细粒长石石英砂岩,单层厚度10~20 cm,细砂岩中的微层理比较发育,镜下为钙质细砂岩;Pm003-24,野外定名为灰色中薄层泥质细砂岩,单层厚度>20 cm,其内含泥质成分较多。露头处发育碳酸盐细脉,宽0.5~1.0 mm,同时见有原生黄铁矿立方体,单晶1.0 mm±,部分氧化形成褐铁矿,镜下定名为褐铁矿化泥质细砂岩。

卢家屯组层型剖面地层层序特征及样品采集位置如下:

—————————— 未 见 顶 ——————————

杨树河子黑色岩段

24.灰色褐铁矿化泥质细砂岩,采集碎屑锆石

163.5 m

23.黑灰色凝灰质粉砂岩,单层厚度为10~20 cm,产动物化石

57.3 m

22.黄灰色粉砂岩夹粉砂质泥岩

64.1 m

21.灰白色粉砂质泥岩

94.8 m

漏斗山杂色岩段

20.紫色泥岩

143.5 m

19.青灰色含粉砂质泥岩

57.9 m

18.黑灰色粉砂岩,局部菱铁矿化

30.5 m

17.灰色钙质细砂岩,见褐铁矿化,采集碎屑锆 石

127.9 m

16.褐铁矿化石英长石粉砂岩

127.9 m

15.褐铁矿化石英长石细砂岩

127.9 m

14.灰黑色钙质粉砂岩

39.5 m

13.黄灰色褐铁矿化石英长石粉砂岩

74.4 m

12.紫色泥岩

91.5 m

11.青灰色含粉砂质泥岩,含有褐铁矿斑点

59.8 m

10.黄灰色杂砂质石英长石粉砂岩

59.8 m

9.青灰色粉砂岩

59.8 m

8.紫色细粒杂砂岩

278.9 m

7.紫色砾岩

235.5 m

影背山砾岩段

6.紫色凝灰质粉砂岩

124.7 m

5.灰绿色轻微变质粉砂岩

720.7 m

4.青灰色钙质细粒杂砂岩

233.7 m

3.灰黑色泥质粉砂岩

157.2 m

2.紫灰色厚层复成分砾岩,采集碎屑锆石

169.4 m

1.青灰色中粒杂砂岩

1 073.0 m

————-- 早侏罗世二长花岗岩侵入 ————--

4 同位素样品分析方法及测试结果

4.1 样品制作及分析方法

将上述3件人工重砂样品,委托吉林省区域地质矿产调查所岩矿室加工分选。按常规方法分别进行破碎至80~100目,后经重力分选,利用矿物介电分选仪进行磁选,重液先选,于双目镜下挑选出晶形相对较好、无明显裂痕和包体的单颗粒锆石晶体,将其粘贴在双面胶上,灌入环氧树脂冷却凝固后,打磨抛光露出锆石表面,对其进行透射光、反射光和阴极发光(CL)图像的采集。锆石的制靶和显微图像的采集均在中国地质科学研究院国家重点开放实验室完成。

锆石LA-ICP-MS U-Pb同位素分析在国家地质实验测试中心完成。U-Pb同位素测定使用Agilent 7500Ce( New Wave UP213)和德国Lambdaphysik公司的Compex102 ArF准分子激光器以及Microlas 公司的Geolas 200M光学系统联机进行。锆石测定过程中激光束斑直径为30 μm,激光剥蚀样品的深度为20~40 μm。实验中采用He作为剥蚀物质载气;用人工合成硅酸盐玻璃标准参考物质NISTSRM610进行仪器最佳化。锆石年龄采用国际标准锆石91500作为外标标准物质;含量采用NISTSRM610作为外标,同时使用锆石中含量稳定的29Si作为内标。所测单点的同位素比值及元素含量采用Glitter (Var4.0 Macquarie University)程序进行计算。对所有数据进行普通铅校正,谐和图的绘制采用Isololt 3.0完成[12-13]。单个分析点的同位素比值和同位素年龄的误差(标准偏差)为1σ,206Pb/238U加权平均年龄按95%的置信度给出。详细的实验分析步骤和数据处理方法均按文献[14]所提出的精度和要求进行。

4.2 同位素测试结果

Pm003-2(影背山砾岩段),测定了120个单颗粒锆石,每个锆石1个点。从图3中可见,所有锆石均显示清晰的振荡生长环带,个别具核幔结构;由表1可知,Th/U为0.05~1.71,平均值为0.65,故所测锆石均具岩浆成因特点[15]。其表面年龄按分布频率明显可划分为7组(图4):第一组,n=20,(1 738.7±16.3)~(2 579.6±19.9) Ma;第二组,n=5,(1 496.8±13.2)~(1 602.1±14.9) Ma;第三组,n=2,(1 177.8±11.1)~(1 214.7±11.0)Ma;第四组,n=7,(837.2±10.9)~(955.8±7.9)Ma;第五组,n=22,(411.9±3.7)~(542.1±5.2)Ma;第六组,n=53,(251.5±2.4)~(398.8±4.3)Ma;第七组,n=11, (179.6±1.6)~(243.8±2.3)Ma。从图5a中可明显地看到第五组年龄数据点密集地分布在谐和线上,剔除远离谐和线的样品,获得206Pb/238U加权平均年龄为(283.4±7.9)Ma(n=41,MSWD=71)(图5b),代表了样品沉积时限晚于早二叠世。特别指出,第一组加权年龄值((2 448.0±23.0)Ma,n=3,MSWD = 0.48)(图5c)可能为捕获松嫩地块的残留(老)锆石年龄,也可能为来自华北板块的基底锆石年龄。

图3 Pm003-2典型锆石阴极发光图像Fig.3 A typical Cathodoluminescence image of Zircon of Pm003-2

图4 Pm003-2碎屑锆石U-Pb年龄分布频率图Fig. 4 Distribution frequence of the detrital zircon U-Pb ages of Pm003-2

样品测点Th/U同位素比值207Pb/206Pb±1σ206Pb/238U±1σ207Pb/235U±1σt/Ma206Pb/238U±1σPm003-2-10.090.054010.001760.078580.001200.563050.024634887Pm003-2-20.080.053100.000990.040560.000490.292210.006332563Pm003-2-30.620.070420.000720.153960.001541.513910.017659239Pm003-2-40.370.146160.001410.481110.005419.551740.12257253224Pm003-2-50.400.052920.000620.049410.000490.360250.004493113Pm003-2-60.180.164460.002750.057820.000681.296320.032723624Pm003-2-70.470.157800.001570.463370.0046410.216950.12244245420Pm003-2-80.660.157410.001550.464450.0048210.189610.12579245921Pm003-2-90.090.104990.001540.143220.001721.996570.0484286310Pm003-2-100.050.065890.001010.087290.000900.769630.015685405Pm003-2-110.660.053230.000600.043770.000440.316540.003832763Pm003-2-120.310.052610.000770.039970.000400.290710.004712532Pm003-2-130.950.055030.000770.069860.000660.518210.008464354Pm003-2-141.040.052740.000660.046570.000430.338060.004462933Pm003-2-150.930.052620.000720.044540.000450.326140.004992813Pm003-2-161.000.051010.000630.044550.000450.317770.004272813Pm003-2-170.890.108280.001190.318960.003064.804850.08267178515Pm003-2-180.760.056190.000980.050430.000520.378800.007843173Pm003-2-190.660.053880.000980.045910.000480.345170.007342893Pm003-2-200.890.052750.000820.044950.000500.328020.005922843Pm003-2-210.830.150790.001640.404640.004008.535650.16287219018Pm003-2-220.930.162270.001630.436120.004769.726080.14113233321Pm003-2-230.810.111190.001150.282140.002974.213390.05826160215Pm003-2-240.760.152480.001540.403050.004228.322920.11632218319Pm003-2-250.720.061720.000970.048380.000460.412140.007503053Pm003-2-260.830.059450.000730.074900.000660.600580.008014664Pm003-2-270.780.058990.000930.045940.000460.381250.006912903Pm003-2-281.000.114870.001190.332110.003315.373130.07319184916Pm003-2-290.880.117970.001210.350980.003375.777770.07270193916Pm003-2-301.030.053990.001000.049690.000600.364890.008103134Pm003-2-310.590.066490.001250.044830.000460.421540.009572833Pm003-2-320.630.055020.000860.044890.000420.346910.006092833Pm003-2-330.170.120530.001300.159830.001422.689820.035679568Pm003-2-340.870.056380.000780.036570.000340.291480.004282322Pm003-2-350.480.052300.000640.028240.000250.207420.002481802Pm003-2-360.610.055850.000990.039780.000390.300870.006052522Pm003-2-370.410.051310.000650.030660.000270.214970.002711952Pm003-2-380.950.080650.001260.152000.001501.737150.045919128Pm003-2-390.390.057020.000810.068390.000630.548120.009214274Pm003-2-400.530.057350.001090.058990.000600.475580.011293704

表1(续)

表1(续)

图5 Pm003-2碎屑锆石U-Pb年龄谐和图Fig. 5 Concordan diagrams of the detrital zircon U-Pb ages of Pm003-2

Pm003-17(漏斗山杂色岩段),测定了80个单颗粒锆石,每个锆石1个点。从图6中可见,所有锆石均显示清晰的振荡生长环带;从表2可知,Th/U值为0.34~10.89,平均值为2.00,故所测锆石均具岩浆成因特点。其表面年龄明显可划分为10组(图7):第一组,n=3,(2 093.6±19.1)~(2 562.4±20.8)Ma;第二组,n=2,(1 452.4±14.1)~(1 508.9±14.0)Ma;第三组,n=3,(1 144.7±12.6)~(1 261.8±13.0)Ma;第四组,n=3,(940.6±9.2)~(978.5±9.9)Ma;第五组,n=3,(659.9±7.7)~(752.8±7.9)Ma;第六组,n=8,(464.3±5.2)~(558.5±6.3)Ma;第七组,n=6,(367.8±4.5)~(423.5±4.7)Ma;第八组,n=8,(311.0±3.5)~(355.7±5.1)Ma;第九组,n=37,(201.5±3.0)~(298.2±3.7)Ma;第十组,n=7,(163.±1.7)~(199.6±2.3)Ma。从图8a中可明显地看到第九组年龄数据点密集地分布在谐和线上,剔除远离谐和线的样品,获得206Pb/238U加权平均年龄为(262.4±3.9)Ma(n=23,MSWD=9)(图8b),代表了样品沉积时限晚于晚二叠世。第十组加权年龄值((197.3±2.5)Ma,n=7,MSWD = 1.4)(图8c)可能混有早侏罗世结晶锆石。

Pm003-24(杨树河子黑色岩段),测定了120个单颗粒锆石,每个锆石1个点。从图9中可见,所有锆石均显示清晰的振荡生长环带;由表3可知,Th/U值为0.09~3.13,平均值为0.84,故所测锆石均具岩浆成因特点。其表面年龄明显可划分为7组(图10、图11):第一组,n=5,(2 267.4±21.6)~(2 506.4±20.9)Ma;第二组,n=3,(1 819.4±16.4)~(1 984.0±19.8)Ma;第三组,n=2,(1 503.8±15.3)~(1 542.3±16.4)Ma;第四组,n=3,(845.8±8.8)~(1 079.4±13.7)Ma;第五组,n=25,(403.1±5.3)~(507.6±7.2)Ma;第六组,n=47,(200.0±2.2)~(356.3±3.8)Ma;第七组,n=35,(131.6±1.3)~(198.5±2.4)Ma。由图11可见:第五组剔除远离谐和线的样品,表面加权平均年龄为(439.3±7.9)Ma(n=23,MSWD=13);第六组表面加权平均年龄为(255.5±5.8)Ma(n=23,MSWD=14);第七组表面加权平均年龄为(158.7±8.3)Ma(n=34,MSWD=138)。采样点附近花岗斑岩脉发育,样品中可能混有微细脉岩中的锆石。第五组表面加权年龄((439.3±7.9)Ma)可能代表晚奥陶世--早志留世时期残留锆石年龄;第六组表面加权平均年龄((255.5±5.8)Ma)可能代表卢家屯组沉积时限晚于晚二叠世;第七组表面加权平均年龄((158.7±8.3)Ma)可能混有周围晚侏罗世--早白垩世花岗斑岩结晶锆石年龄。

表2 卢家屯组中段Pm003-17碎屑锆石LA-ICP-MS U-Pb分析结果

Table 2 LA-ICP-MS U-Pb Results of the detrital zircon of Pm003-17 from the middle section of Lujiatun Formation

样品测点Th/U同位素比值207Pb/206Pb±1σ206Pb/238U±1σ207Pb/235U±1σt/Ma206Pb/238U±1σPm003-17-13.770.046790.001250.030780.000370.211460.006391952Pm003-17-20.340.050400.000880.039300.000410.273870.005432493Pm003-17-31.940.049860.000890.030460.000310.212410.004151932Pm003-17-41.150.052520.001490.039750.000520.280060.009312513Pm003-17-51.200.060480.000790.046710.000570.364930.005872944Pm003-17-62.960.059440.000950.089690.000980.721770.015315546Pm003-17-72.190.052260.000940.044150.000460.315720.006552793Pm003-17-81.140.070220.001720.041920.000600.417990.012752654Pm003-17-92.680.056840.001000.083070.000890.666480.015655145Pm003-17-101.740.090610.001010.252710.002743.189400.05115145214Pm003-17-110.900.053700.001160.052950.000650.390520.010273334Pm003-17-121.070.059610.001240.065030.000820.522490.013894065Pm003-17-131.520.050790.001100.040580.000470.287350.007292563Pm003-17-141.210.071140.000810.163910.001781.548460.0227797910Pm003-17-150.820.056050.001410.047350.000600.367950.011252984Pm003-17-167.160.064690.000740.123860.001371.101060.015607538Pm003-17-1710.890.060490.001060.090500.001060.748790.017615596Pm003-17-185.020.072500.000760.159690.001711.594850.0193395510Pm003-17-191.460.054400.000770.043040.000480.324750.005262723Pm003-17-201.980.107100.001330.263730.002753.963760.08657150914Pm003-17-211.760.053610.001320.036630.000430.260400.007382323Pm003-17-221.010.061430.000960.107780.001320.913810.019746608Pm003-17-231.840.052740.001080.043300.000560.314010.007612733Pm003-17-240.850.057570.001170.039300.000480.308570.007272493Pm003-17-251.880.055470.001060.065420.000750.493750.011854095Pm003-17-261.640.060120.002130.040780.000610.325550.013822584Pm003-17-271.810.106960.001610.194320.002343.020820.08515114513Pm003-17-282.300.066110.001140.067290.000760.611530.013464205Pm003-17-291.630.052220.000860.042040.000510.304110.005852663Pm003-17-301.490.051580.000910.031110.000350.217290.004241982Pm003-17-311.130.056890.001100.053190.000630.421120.009953344Pm003-17-321.700.084670.000920.205090.002312.450060.03568120312Pm003-17-331.740.121280.001290.216200.002453.622470.05240126213Pm003-17-341.080.077950.000970.055040.000620.598210.008923454Pm003-17-351.760.051690.001020.032640.000420.238180.005392073Pm003-17-360.730.052430.001240.046070.000650.342080.009812904Pm003-17-371.330.053090.000760.049430.000560.361760.006093113Pm003-17-381.480.052290.001760.056720.000830.415890.017593565Pm003-17-394.270.055650.000790.042030.000470.329640.005362653Pm003-17-401.350.139840.001470.383720.004117.590210.11525209419

表2(续)

表3 卢家屯组上段Pm003-24碎屑锆石LA-ICP-MS U-Pb分析结果

Table 3 LA-ICP-MS U-Pb Results of the detrital zircon of Pm003-24 from the upper section of Lujiatun Formation

样品测点Th/U同位素比值207Pb/206Pb±1σ206Pb/238U±1σ207Pb/235U±1σt/Ma206Pb/238U±1σPm003-24-10.750.047150.001250.024020.000340.159890.004641532Pm003-24-20.550.061430.001220.031580.000420.262090.005962003Pm003-24-30.340.048620.001150.031870.000450.210010.005622023Pm003-24-40.710.050670.000780.025900.000290.179850.003041652Pm003-24-50.620.051890.000860.031510.000350.225680.004142002Pm003-24-60.370.053340.000660.031280.000380.216310.003081992Pm003-24-70.650.049940.000890.028500.000380.180070.003651812Pm003-24-80.250.050970.000590.031650.000330.217690.002682012Pm003-24-91.250.049850.000960.029190.000360.195060.004201862Pm003-24-100.800.062970.001310.022950.000310.191320.004401462Pm003-24-110.880.057250.003660.021300.000490.170690.011921363Pm003-24-120.770.049700.001700.021150.000310.145820.005371352Pm003-24-131.500.064460.001720.021930.000320.193050.005651402Pm003-24-140.440.053650.001420.043730.000630.308100.009612764Pm003-24-150.940.048660.001180.024840.000330.163350.004341582Pm003-24-160.720.051070.001600.042190.000630.277790.010152664Pm003-24-170.300.054100.001020.071980.000930.518030.012544486Pm003-24-181.290.054120.000870.073930.000910.532630.010794605Pm003-24-190.880.054970.000760.074520.000850.560550.009604635Pm003-24-201.030.051620.002080.042730.000690.306110.014642704Pm003-24-210.850.154480.001890.360380.004197.419800.20040198420Pm003-24-220.620.058400.001120.070460.000870.561870.013984395Pm003-24-231.260.086900.003540.027220.000510.331250.015701733Pm003-24-240.640.060280.000820.067190.000770.525210.008624195Pm003-24-251.100.082030.001730.037480.000500.409030.010412373Pm003-24-261.210.049560.000910.021440.000250.142570.002811372Pm003-24-270.240.054260.000680.028940.000340.203620.002921842Pm003-24-280.510.163940.002140.033230.000360.730940.011342112Pm003-24-290.640.077290.002970.042460.000720.478920.023772684Pm003-24-300.460.063350.001760.038730.000550.327510.010822453Pm003-24-310.540.056240.000920.066520.000690.511230.010244154Pm003-24-320.950.058090.000900.036730.000430.286280.005102333Pm003-24-331.140.051030.000830.040110.000470.282610.005332543Pm003-24-340.440.116030.001270.326080.003375.184970.08837181916Pm003-24-350.720.056440.000970.074350.000900.579560.012854625Pm003-24-361.130.154720.001730.421540.004778.967100.20316226722Pm003-24-370.500.059270.001120.069230.000810.571730.013924325Pm003-24-380.750.056360.000970.039600.000440.297840.005842503Pm003-24-390.420.050270.000770.032630.000360.220140.003752072Pm003-24-403.130.595370.015090.331030.0075828.705263.34982184337

表3(续)

图6 Pm003-17典型锆石阴极发光图像Fig. 6 A typical cathodoluminescence image of zircon of Pm003-17

图7 Pm003-17碎屑锆石U-Pb年龄分布频率图Fig. 7 Distribution frequence of the detrital zircon U-Pb ages of Pm003-17

图8 Pm003-17碎屑锆石U-Pb年龄谐和图Fig. 8 Concordan diagrams of the detrital zircon U-Pb ages of Pm003-17

图9 Pm003-24典型碎屑锆石阴极发光图像Fig.9 A typical Cathodoluminescence image of Zircon of Pm003-24

图10 Pm003-24碎屑锆石U-Pb年龄分布频率图Fig.10 Distribution frequence of the detrital zircon U-Pb ages of Pm003-24

图11 Pm003-24碎屑锆石U-Pb年龄谐和图Fig.11 Concordan diagram of the detrital zircon U-Pb ages of Pm003-24

5 讨论

岩石地层的碎屑岩浆成因锆石高精度测年,当其有足够数量样品和测点时,特别是年谱结构,不仅可以确定岩石地层时代属性,而且可用以揭示盆地形成的构造环境,乃至作为反演区域构造演化的有效手段之一[16-19]。由此,依据本文所提供卢家屯组自下而上3件样品320个测点所作的分析可获得如下有重要地质意义的认识。

卢家屯组建组之时,不同古生物门类的研究者曾对其地层时代有过晚二叠世说提出过不同认识。碎屑岩浆成因锆石所获年谱特征,为早三叠世说提供了有力的科学证明。这为对生物地层定年有争议的岩石地层单位,通过碎屑锆石的裁定提供了范例,亦为长期将Palaeanodonta-Palaeomutela动物群作为晚二叠世陆相地层有效的生物组合标志之一提供了新的解释,即其一些重要分子可以繁衍到早三叠世。

卢家屯组碎屑锆石年谱结构特征,与松嫩地块[20]、张广才岭构造带[21]所总结出的地质演化的年谱结构基本一致。区内卢家屯组系陆相沉积,沉积厚度巨大,达4 316.2 m,这表明自晚二叠世地槽回返以后,地壳的沉降幅度仍然很大。岩性生物特征表明了典型湖相沉积的特点,沉积物质来源较杂,有火山碎屑物质、铁质、钙质、泥质、砂、砾等,虽有沉积韵律,但不十分清晰,有粗细混杂的现象。这暗示了卢家屯组沉积盆地形成的构造背景为松嫩地块东南缘(现代方位)山弧带上所发育的磨拉石盆地。

比较3件测试样品年龄分布频率图,反映沉积盆地的演化、物源区裸露的地质体及其出露面积发生过显著的变化,表明其周边山地出现了快速隆升、快速剥蚀,并快速搬运至盆地形成快速堆积的磨拉石相地层。删除微细脉岩中的锆石,绝大多数年龄集中在晚古生代--早中生代:Pm003-2有86点集中在(179.6~243.8) ~(411.9~542.0)Ma;Pm003-17有59点集中在(201.5~298.2)~(464.3~558.5)Ma;Pm003-24有72点集中在(200.0~356.3)~(403.1~507.6)Ma,占测点总数68%以上。并且所取3件样品均捕获有较老碎屑锆石:Pm003-2有20点集中在(1 738.7~2 579.6)Ma;Pm003-17有3点集中在(2 093.6~2 562.4)Ma;Pm003-24有8点集中在(2 267.4~2 506.4)~(1 819.4~1 984.0) Ma。上述年龄峰值与1 800~2 500 Ma华北基底陆壳形成华北板块的时间吻合。白山镇、夹皮沟地区变质二长花岗岩-钾长花岗岩锆石U-Pb等时线年龄为(2 505±14)Ma[22]、紫苏花岗岩Sm-Nd全岩等时线年龄为(2 440±159)Ma[23]、柳河地区之麻粒岩锆石U-Pb不一致线年龄为(2 511.89±0.75)Ma[24]。可见华北板块北缘活动带与佳木斯--兴凯地块南缘活动带形成时代从晚古生代一直持续到早中生代。由此基本可以判断:古亚洲洋的封闭是通过晚古生代的“幕式”碰撞作用,于早三叠世磨拉石发育完成后,最终闭合,确定认为华北板块北缘与其北侧地块群最终闭合时间应为P3-T1。

6 结论

1)卢家屯组三组碎屑岩浆成因锆石数据有力地证明该组的沉积上限为晚二叠世, 为早三叠世说提供了年代学证据。

2)当碎屑岩浆成因锆石有足够数量的样品和测点,特别是年谱结构时,不仅可以确定岩石地层时代属性,还可作为反演区域构造演化的有效手段之一。

3) 通过对卢家屯组大量碎屑锆石定年数据分析及区域对比可以认定:华北板块北缘与其北侧地块群最终闭合时间应为P3-T1。

[1] 李东津.吉林省岩石地层[M].北京:中国地质大学出版社,1997:21-31. Li Dongjin. Jilin Rock Formations[M].Beijing: China University of Geosciences Press,1997:21-31.

[2] 彭玉鲸,齐成栋,周晓东,等.吉黑复合造山带古亚洲洋向滨太平洋构造域转换:时间标志与全球构造的联系[J].地质与资源,2012,21(3):261-265. Peng Yujing, Qi Chengdong, Zhou Xiaodong, et al. Ransition from Paleo-Asian Ocean Domain to Circum-Pacific Ocean Domain for the Ji-Hei Composite Orogenic Belt: Time Mark and Relationship to Global Tectonics[J].Geology and Resources, 2012,21(3): 261-265.

[3] 王五力,郭胜哲.中国东北古亚洲与古太平洋构造域演化与转换[J].地质与资源,2012,21(1):27-34. Wang Wuli, Guo Shengzhe. The Evolution and Transformation of Paleo-Asia and Paleo-Pacifictectonic Domain of Northeast China[J].Geology and Resources, 2012, 21(1): 27-34.

[4] 邵济安,牟保磊,何国琦,等.华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用[J].中国科学:D辑,1997,27(5):390-394. Shao Ji’an,Mu Baolei,He Guoqi,et al. Geological Processes of the Process of Structural Overlapping Between Paleo-Asian Domain and Paleo-Pacific Domain in Northern Part of North China[J].Science in China:Series D, 1997,27(5):390-394.

[5] 孙德有,吴福元,张艳斌,等.西拉木伦河--长春--延吉板块缝合带的最后闭合时间:来自吉林大玉山花岗岩体的证据[J].吉林大学学报:地球科学版,2004,34(2):174-181. Sun Deyou,Wu Fuyuan,Zhang Yanbin, et al. The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone:Evidence from the Dayushan Granitic Pluton, Jilin Province[J].Journal of Jilin University: Earth Science Edition, 2004, 34(2): 174-181.

[6] Miao L C,Fan W M,Liu D Y,et al. Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex: Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogemc Belt, China[J]. Journal of Asian Earth Sciences, 2008,32:348-370.

[7] 王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,1997,36(1):58-69. Wang Yujing, Fan Zhiyong. Discovery of Permian Radiolarians in Ophiolite Belt on Northern Side of Xar Moron River, Nei Monggol and Its Geological Significance[J].Acta Palaeontologica Sinica, 1997, 36(1): 58-69.

[8] 陈衍景,翟明国,蒋少涌.华北大陆边缘造山过程与成矿研究的重要进展和问题[J].岩石学报,2009,25(11):2695-2726. Chen Yanjing, Zhai Mingguo, Jiang Shaoyong. Significant Achievements and Open Issues in Study of Orogenesis and Metallogenesis Surrounding the North China Continent[J].Acta Petrologica Sinica, 2009, 25(11):2695-2726.

[9] 李锦轶,高立明,孙桂华,等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报,2007,23(3):565-582. Li Jinyi, Gao Liming, Sun Guihua, et al. Shuangjingzi Middle Triassic Sys-Clooisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision Between Siberian and Sino-Korean Paleo-Plates[J].Acta Petrologica Sinica, 2007,23(3):565-582.

[10] 张艳斌,吴福元,李惠民,等.吉林黄泥岭花岗岩体的单颗粒锆石U-Pb年龄[J].岩石学报,2002,18(4):475-481. Zhang Yanbin,Wu Fuyuan, Li Huimin, et al. Single Grain Zircon U-Pb Ages of the Huangniling Granite in Jilin Province[J].Acta Petrologica Sinica, 2002, 18(4):475-481.

[11] 郗爱华,任洪茂,张宝福,等.吉林中部呼兰群同位素年代学及其地质意义[J].吉林大学学报:地球科学版,2003,33(1):15-18. Xi Aihua, Ren Hongmao, Zhang Baofu, et al.Isotopic Chronology of the Hulan Group and Its Geological Significance in the Central Jilin Province[J].Journal of Jilin University: Earth Science Edition,2003,33(1):15-18.

[12] Andersen T. Correction of Common Lead in U-Pb Analyses that Do not Report204Pb[J]. Chemical Geology, 2002,192(1/2):59-79.

[13] Ludwing K R. Using Isoplot/Ex, Version 2.49: A Geochronological Toolkit for Microsoft Excel[M].Berkeley: Berkeley Geochronological Center Special Publiction, 2001:1-55.

[14] Yuan H L,Gao S,Liu X M,et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation Inductivey Coupled Plasma Mass Spectrometry[J].Geastandard Newsletter, 2004,28(3):353-370.

[15] Koschek G. Origin and Significance of the SEM Cathodoluminescence from Zircon[J].Journal of Microscopy,1993,171(3):223-232.

[16] Leiss O. Orogenically Controlled Sedimentation in the Lechtaler Kreideschiefer(Lechtal Shale: Cretaceous) and Geodynamics of Inner Western CA(Northern Calearous Alps: Leehatl Alps)[J]. Geological Rundschau, 1992,81(3):603-634.

[17] 肖庆辉,李晓波,贾跃明,等.当代造山带研究中值得重视的若干前沿问题[J].地学前缘,1995,2(1/2):43-50. Xiao Qinghui, Li Xiaobo, Jia Yueming, et al. Frontiers on Orogenic Belt Researches[J].Earth Science Frontiers, 1995,2(1/2):43-50.

[18] 闫义,林舸,李自安.利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J].大地构造与成矿学,2003,27(2):184-190. Yan Yi, Lin Ge, Li Zian. Provenance Tracing of Sediments by Means of Synthetic Study of Shape,Composition and Chronology of Zircon[J].Geotectonica et Metallogenia,2003,27(2):184-190.

[19] 韩国卿,刘永江,温泉波,等.西拉木伦河缝合带北侧二叠纪砂岩碎屑锆石LA-ICP-MS U-Pb年代学及其构造意义[J].地球科学:中国地质大学学报,2011,36(4):687-702. Han Guoqing, Liu Yongjiang,Wen Quanbo,et al. LA-ICP-MS U-Pb Dating of Detrital Zircons from the Permian Sandstones in North Side of Xar Moron River Suture Belt and Its Tectonic Implications[J].Earth Science:Journal of China University of Geosciences,2011 ,36(4):687-702.

[20] 梁爽,彭玉鲸,姜正龙.松辽盆地基底“多层结构”的探讨及其构造意义[J].世界地质,2009,28(4):430-437. Liang Shuang, Peng Yujing, Jiang Zhenglong. Discussion on “Multi-Laminate Structure” of Basement in Songliao Basin and Its Significance[J].Global Geology,2009,28(4):430-437.

[21] 许文良,王枫,孟恩,等.黑龙江省东部古生代--早中生代的构造演化:火成岩组合与碎屑锆石U-Pb年代学证据[J].吉林大学学报:地球科学版,2012,42(5):1378-1389. Xu Wenliang, Wang Feng, Meng En, et al. Paleozoic-Early Mesozoic Tectonic Evolution in the Eastern Heilongjiang Province, NE China:Evidence from Igneous Rock Association and U-Pb Geochronology of Detrital Zircons[J].Journal of Jilin University: Earth Science Edition,2012,42(5):1378-1389.

[22] 李俊建,沈保丰,李双保,等.辽北--吉南早前寒武纪大陆壳的地质特征和演化[J].中国区域地质,1998,17(1):30-38. Li Junjian, Shen Baofeng, Li Shuangbao, et al. Geological Feature and Evolution of the Early Precambrian Continental Crust in Northern Liaoning Province and Southern Jilin Province[J].Regional Geology of China,1998,17(1):30-38.

[23] 吴福元,葛文春,孙德有,等.吉林南部太古代花岗岩Sm-Nd,Rb-Sr同位素年龄测定[J] .岩石学报,1997,13(4):499-506. Wu Fuyuan, Ge Wenchun, Sun Deyou, et al. The Sm-Nd,Rb-Sr Isotopic Ages of the Archean Granites in Southern Jilin Province[J].Acta Petrologica Sinica, 1997,13(4):499-506.

[24] 毕守业,张殿发,杨豹.吉林省南部太古宙花岗质岩石及其成因探讨[J] .吉林地质,1991(3):12-24. Bi Shouye, Zhang Dianfa, Yang Bao. A Prelininary Study Archaean Granitic Rocks and Its Origin in the Southern Part of Jilin Province[J].Jilin Geology,1991(3):12-24.

Zircons LA-ICP-MS U-Pb Ages of the Lower Triassic Lujiatun Group and Its Geological Significance in Jilin Province

Nie Lijun, Yu Hongbin, Zhang Jianze, Wang Cong, Li Dong, Li Yang

SurveyofRegionalGeologicalandMineralResourceofJilinProvince,Changchun130022,China

According to the associated lithologic feature, the Lujiatun Formation is divided into Yingbeishan conglomerate section, Loudoushan variegated rock section, and Yangshuhezi black rock section. Based on the fossil assemblages, such asPalaeanodonta-Palaeomutelafauna,Pleuroneia? sp. and the conchostracan, it was formed in Permian. A systematic U-Pb isotopic chronology of the detrital zircon is studied for the Bottom, Middle, and Upper Section of the construction profiles of Lujiatun Formation in Yingbeishan-Shuangdingshan in Jiutai. The results show three minimum zircon age peaks at (283.4±7.9) Ma, (262.4±3.9) Ma, and (255.5±5.8) Ma from the bottom to the top. It can be confirmed that the top section of the formation belonged to the Late Permian. The detrital zircon ages of 1 800 Ma and 2 500 Ma in the Lujiantun Group are typical for the base plate age of North China Plate. In conclusion, the plate closure happened probably during P3-T1between the northern margin of North China Plate and the group of plates to its north.

Lujiatun Formation;Lower Triassic;detrital zircon;zircon LA-ICP-MS U-Pb age; Jilin Province

10.13278/j.cnki.jjuese.201502110.

2014-06-24

中国地质调查局地质矿产调查项目(1212011120726)

聂立军(1975--),男,高级工程师,主要从事区域地质矿产调查研究工作,E-mail:545749249@qq.com。

10.13278/j.cnki.jjuese.201502110

P59

A

聂立军,于宏斌,张建泽,等. 吉林省下三叠统卢家屯组LA-ICP-MS锆石U-Pb定年及其地质意义.吉林大学学报:地球科学版,2015,45(2):453-470.

Nie Lijun, Yu Hongbin, Zhang Jianze, et al. Zircons LA-ICP-MS U-Pb Ages of the Lower Triassic Lujiatun Group and Its Geological Significance in Jilin Province.Journal of Jilin University:Earth Science Edition,2015,45(2):453-470.doi:10.13278/j.cnki.jjuese.201502110.

猜你喜欢

碎屑锆石砂岩
Sweet Carrots甜甜的胡萝卜
一种具有塑料碎屑收集机构的水磨床
CSAMT法在柴北缘砂岩型铀矿勘查砂体探测中的应用
火星上的漩涡层状砂岩
砂岩:黏结在一起的沙子
俄成功试射“锆石”高超音速巡航导弹
清洁搅拌机的小妙招
渤中X油田沙一段生物碎屑白云岩井场识别方法
红锆石
贺兰口砂岩吸水率的研究