APP下载

条纹斑竹鲨养殖藻丛刷系统水质净化技术的应用

2015-06-22张达娟张树林孙茂军等

安徽农学通报 2015年11期
关键词:鲨鱼净化水质

张达娟 张树林 孙茂军等

摘 要:利用人工构建的藻丛刷(Algal Turf Scrubber,ATS)系统处理条纹斑竹鲨养殖用水,并对水中NO3--N、NO2--N、NH4+-N和PO43--P等水质指标进行监测,以确定藻丛刷系统对观赏鱼养殖用水水质的净化效果。试验为期60d,试验期间不换水。结果表明,整个试验期间,水中NO3--N含量维持在5.64~9.87mg/L范围内,NO2--N含量维持在0.03~0.07mg/L范围内,NH4+-N含量维持在0.03~0.07mg/L范围内,PO43--P含量维持在1.33~1.78mg/L范围内。由此可见,在合适的养殖密度和适当的投饵条件下,藻丛刷系统能够有效净化鲨鱼养殖用水水质,使其在不换水情况下维持在稳定范围内。

关键词:藻丛刷系统;鲨鱼;水质;净化

中图分类号 S91 文献标识码 A 文章编号 1007-7731(2015)11-113-04

Abstract:In order to investigate effects of algal turf scrubber(ATS)on cultivated water purification of ornamental fish,artificial ATS was used to purify cultivated water of Chiloscyllium plagiosum and water quality indicators,including NO3--N,NO2--N,NH4+-N and PO43--P,were measured.The experiment lasted for 60d and water was not renewed.The results showed that contents of NO3--N,NO2--N,NH4+-N and PO43--P were kept in the range of 5.64~9.87mg/L,0.03~0.07mg/L,0.03~0.07mg/L and 1.33~1.78mg/L respectively during the whole experiment.It was indicated that ATS could purify cultivated water of Chiloscyllium plagiosum effectively and maintain stabilization of water quality when shark were cultured with appropriate density and feeding dose.

Key words:Algal turf scrubber;Chiloscyllium plagiosum;Water quality;Purification

随着人们生活水平的提高,观赏水族养殖已成为家庭装饰的新宠。观赏水族养殖在高速、大规模发展的同时也存在着一些问题,养殖用水的污染就是其中之一。由于水族箱体积有限、投饵和交换水困难,易造成N、P等物质的堆积,导致养殖对象生长缓慢,易发疾病,降低了水族箱的观赏性和装饰性。

底栖藻类作为水体中的重要初级生产者,不仅是水生态系统中物质循环和能量流动的基础[1],也可以通过自身吸收利用、吸附、络合以及与其他生物协同作用调节水生态系统,净化水质[2]。自20世纪50年代开始,研究学者开始关注利用藻类去除水体中N、P来净化水质,已经取得了一定的成果,并且开发出以此为基础的藻丛刷系统(Algal Turf Scrubber,ATS)[3]、底栖藻类-生物膜系统[4]和底栖藻类水产养殖系统[5-6],已经成功用于畜禽、水产养殖废水的处理与净化中。马沛明等利用浮游藻类处理某造纸厂下游的人工合成污水后指出,底栖藻类对污水TN、TP、NH4+-N和NO3--N的去除率分别达到96%、98%、98%和97%,效果十分明显[7]。将藻丛刷系统引入到观赏鱼养殖的水质净化中,不仅可以有效降低水体N、P的含量,而且可以减少底栖藻类在水族箱缸壁的附着,提高观赏性。

条纹斑竹鲨(Chiloscyllium plagiosum),俗称狗鲨、犬鲨,隶属于软骨动物门,须鲨纲,须鲨科,斑竹鲨属,为暖水性小型鲨鱼,在我国东海和南海均有分布。一般成鱼体重1~1.5kg,最大个体3~3.5kg,体长可达1m左右。该鱼喜栖息于浅海或内湾贝、藻类繁多的环境中,主食软体动物、多毛类、虾蟹及底栖小型鱼类。条纹斑竹鲨不仅具有药用价值[8-9],而且还是名贵的观赏鱼类,市场价值高,是值得开发的海水鱼养殖新品种。条纹斑竹鲨摄食量大,代谢产物多,易导致养殖水体中N、P累积致使水质恶化,因而在养殖过程中必须加大换水频率和换水量以保证良好的水质。

本研究在天津海昌极地海洋世界模拟潮间带藻类生长条件,创造干湿交替的生长环境自制藻丛刷系统,在不换水的条件下,利用养殖水体中自然附着的底栖藻类去除条纹斑竹鲨养殖过程中产生的N、P营养盐,并定期对水质理化指标进行监测,以确定藻丛刷系统对观赏鱼养殖用水的净化效果,为藻丛刷系统在大型水族箱观赏鱼养殖水质净化中的应用奠定基础。

1 材料与方法

1.1 试验装置 试验装置主要由4部分组成:鲨鱼养殖池(190cm×175cm×75cm)(a)、藻丛刷系统(b)、生化池+暂留池(c)、蛋白分离器(d)(图1)。藻丛刷系统由有机玻璃制成,处理缸(120cm×30cm×50cm)内放入一块聚乙烯筛绢(100cm×37cm)作为底栖藻类附着基质。筛网通过打磨成小刺状,更利于藻类附着,模拟潮间带底栖藻类生长环境,在筛网上方附有流水管,使水流自上而下通过均匀小孔流过藻丛刷筛网面,藻丛刷下方1/5面积浸入水中。然后流回养殖池,与鲨鱼养殖池形成自循环。试验期间用2支日光灯置于藻丛刷处理缸上方提供光照,光照强度控制在2 500lx,光照时间为每天7:00~19:00,光暗比为12h∶12h。同潮间带底栖藻类所获自然光光照周期基本保持。

1.2 试验设计 养殖池内养殖用水体积为3.25t,共养殖37条条纹斑竹鲨,其中大小为50~80cm的条纹斑竹鲨有22条,15~17cm的15条。试验为期60d,每日上午9:00和下午3:00进行投喂,分别投喂沙丁鱼300g、200g。试验期间分别仅采用生化池+暂留池、蛋白分离器和ATS系统处理养殖用水,整个试验期间不换水。养殖用水由出水口分别流经生化池、蛋白分离器和ATS系统,再分别流入养殖池。

1.3 水样采集及相关测定方法 条纹斑竹鲨养殖池内设置2个取水点,每个取水点取2个平行水样。每隔3d水样一次,按照海洋调查规范第4部分:海水化学要素调查(GB/T12763.4-2007)相关方法测定养殖水体中NO3--N、NO2--N、NH4+-N和PO43--P的含量:NO3--N(锌镉还原法);NO2--N(重氮-偶氮法);NH4+-N(次溴酸钠氧化法);PO43--P(抗坏血酸还原磷钼蓝法)。用盐度计、温度计、便携式pH仪、溶解氧分析仪分别测定养殖水体盐度、温度、pH、溶解氧变化情况,试验期间测得盐度、温度、pH、溶解氧结果如下:盐度31%~33.5‰,温度21.9%~26.9℃,pH8.0~8.06,溶解氧7.7~7.8mg/L。

1.4 底栖藻类收获及测定 每7d收集一次附着基上的藻体,用毛刷刷下的藻体在105℃先烘15min,随后将温度降至65℃再烘5~6h至恒重后称重。

2 结果与分析

2.1 藻丛刷系统对条纹斑竹鲨养殖水体NO2--N的影响 由图2可知,NO2--N含量基本维持在0.03~0.07mg/L范围内,略有下降的趋势,说明这个系统能够有效吸收养殖过程中由于投饵、粪便等正常养殖活动产生的NO2--N。

2.2 藻丛刷系统对条纹斑竹鲨养殖水体NO3--N的影响 由图3可知,NO3--N的含量维持在5.64~9.87mg/L范围内,基本趋于稳定,说明这个系统能够有效吸收养殖过程中产生的NO3--N。

2.3 藻丛刷系统对条纹斑竹鲨养殖水体NH4+-N的影响 如图4所示,条纹斑竹鲨养殖池水体NH4+-N的含量基本维持在0.03~0.07mg/L范围内,说明这个系统能够有效吸收养殖过程中产生的NH4+-N。

2.4 藻丛刷系统对条纹斑竹鲨养殖水体PO43--P的影响 条纹斑竹鲨养殖池水体PO43--P的含量基本维持在1.33~1.78mg/L这个水平范围内(图5),基本趋于稳定,说明藻丛刷系统能够有效吸收养殖过程中产生的PO43--P。

2.5 附着藻类收获生物量 人工聚乙烯筛绢上生长的底栖藻类主要由丝状绿藻组成,且在整个实验期间能保持较好的稳定性和连续性。由表1可知,试验期间收集到藻类的干重,每7d藻类收获量保持在2.584 5~2.720 4g范围内,周期性藻类收获量差异不大。

3 结论与讨论

3.1 观赏鱼养殖中的水质净化技术 在人工养殖水体尤其是观赏水族养殖过程中,各营养物质的来源主要是饵料的投入和养殖对象自身的排泄物,大量营养物质的积累易导致水体恶化。水质日常维护及净化多采用物理方式和生物方式滤除营养盐,无论采用何种方式的最终目的是去除水体中过量的N、P等营养盐或将对养殖对象有害的NH4+-N和NO2--N转化为相对无害的NO3--N[10]。不过观赏鱼对NO3--N也有一定的耐受范围,50mg/L或者更低浓度是其耐受上限。由此可见,传统的水质净化方法存在一定的局限性,而藻丛刷系统的出现可以有效地解决这一问题。

3.2 藻丛刷系统水质净化技术 藻从刷具有设计简单,材料廉价,对运行环境条件要求较低等特点,在水质净化和废水处理方面已经有了一定的应用。藻丛刷基质上附着的大量藻类能够充分利用不同形式N源P源作为营养源,既有效降低了NH4+-N和NO2--N,又有效地降低了NO3--N浓度[11-12],N、P去除效果好。由本次研究表明,在持续投喂和不换水的条件下,60d内条纹斑竹鲨养殖水体的NH4+-N、NO2--N和NO3-N均未出现明显升高,说明借助于底栖藻类对氮磷的吸收特性构建的ATS系统,可吸收养殖鲨鱼因代谢、投饵产生的N、P营养盐,进而使养殖水质维持在稳定水平。表明藻丛刷系统对该水体有着明显的净化作用。马沛明等指出,底栖藻类对NH4+-N较为敏感,当水体中同时存在NH4+-N和NO3--N时,水网藻、刚毛藻水绵等大型绿藻首先利用NH4+-N,待NH4+-N下降到一定程度后,开始利用NO3--N[7]。关于其作用机理也早有报道,由于藻类不能产生有活性的硝酸还原酶,当水体中的NH4+-N浓度很低或近于消耗完时,底栖藻类才NO3--N进行吸收和利用[13]。同样,藻丛刷系统对对奶牛场废水和生活污水中的TN、TP的去除率高达46%~90%[14-15]。与此同时,藻丛刷系统中基质上附着的藻类也具有一定的潜在应用价值。因此,利用藻类处理循环水条纹斑竹鲨养殖水体,具有成本低、能耗少、效率高、收益大、出水溶解氧含量高等特点,是一项非常有潜力的生态环保技术。

3.3 影响藻丛刷系统水质净化效率的因素 藻丛刷系统操作简便,运行过程中不需特殊手段,只要提供合适的基质和光照,控制特定的流速就能正常运行。为了提高藻丛刷系统水质净化效率,本研究自制的藻丛刷水质净化系统由2支日光灯置于藻丛刷处理缸上方提供光照,光照时间为每天7:00~19:00,光暗比为12h∶2h,同潮间带底栖藻类所获自然光光照周期一致。采用瀑布式水流设计促提供适宜流速使底栖藻类生物量达到最高。可以作为藻丛刷系统应用于观赏水族净化的参考。

参考文献

[1]裴国凤,刘国祥,胡征宇.武汉东湖底栖藻类对磷的滞留作用[J].环境科学学报,2009,29(4):840-845.

[2]栗越妍,孟睿,何连生,等.净化水产养殖废水的藻种筛选[J].环境科学与技术,2010,33(6):68-70.

[3]Mulbry W,Kondrad S,Pizarro C,et al.Treatment of dairy manure effluent using freshwater algae:Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers[J].Bioresource Technology,2008,99(17):8137-8142.

[4]Khatoon H,Yusoff F,Banerjee S,et al.Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackishwater shrimp ponds[J].Aquaculture,2007,273(4):470-477.

[5]Keshavanath P,Gangadhar B,RameshTJ,et al.Effects of bamboo substrate and supplemental feeding ongrowth and production of hybrid red tilapia fingerlings(Oreo-chromismossambicus×Oreochromis niloticus)[J].Aquaculture,2004,235:303-314.

[6]Khatoon H,Yusoff FM,Banerjee S,et al.Use of periphytic cyanobacterium and mixed diatoms coated substrate for improving water quality,survival andgrowth of Penaeus monodon Fabricius postlarvae[J].Aquaculture,2007,271:196-205.

[7]马沛明,况琪军,刘国祥,等.底栖藻类对氮、磷去除效果研究[J].武汉植物学研究,2005,23(5):465-469.

[8]袁秋萍.鲨鱼松保健食品的研制[J].食品工业科技,1999,4(20):59.

[9]于志浩,苏福强,吕家本,等.鲨鱼软骨提取物对肿瘤的抑制作用[J].中国生化药物杂志,1998,2(19):85-87.

[10]施鲲.水族箱水质净化和观赏鱼饲料[J].渔业现代化,2000,5:26-27.

[11]陈重军,韩志英,朱荫湄,等.周丛藻类及其在水质净化中的应用[J].应用生态学报.2009,20(11):2820-2826.

[12]Rectenwald L,Drenner R.Nutrient Removal from Wastewater Effluent Using an Ecological Water Treatment System[J].Environmental Science & Technology,2000,34,522-526.

[13]Syrett PJ.Nitrogen metabolism of microalgae[J].Canadian Bulletin Fisheries and Aquatic Science,1981,210:182-210.

[14]MulbryWW,Kondrad SL,Pizarro C,et al.Treatment of dairy manure effluent using freshwater algae:Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers.Bioresource Technology,2008,99:8137-8142.

[15]Pizarro C,MulbryW,Blersch D,et al.An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent.EcologicalEngineering,2006,26:321-327.

(责编:张宏民)

猜你喜欢

鲨鱼净化水质
水质抽检岂容造假
鲨鱼
鲨鱼来袭
一月冬棚养虾常见水质浑浊,要如何解决?这9大原因及处理方法你要知晓
这条鱼供不应求!虾蟹养殖户、垂钓者的最爱,不用投喂,还能净化水质
鲨鱼之最
背负恶名的鲨鱼
肌肤净化大扫除START
陶色净化
水质总磷测定存在的问题初探