水肥减量对日光温室土壤水分状况及番茄产量和品质的影响
2015-06-15陈竹君雷金繁张晓敏白新禄周建斌
罗 勤, 陈竹君,2*, 闫 波, 雷金繁, 张晓敏, 白新禄, 周建斌,2
(1西北农林科技大学资源环境学院,陕西杨凌 712100; 2 农业部西北植物营养与农业环境重点实验室,陕西杨凌 712100; 3 杨凌区农业技术推广中心, 陕西杨凌 712100)
水肥减量对日光温室土壤水分状况及番茄产量和品质的影响
罗 勤1, 陈竹君1,2*, 闫 波1, 雷金繁3, 张晓敏1, 白新禄1, 周建斌1,2
(1西北农林科技大学资源环境学院,陕西杨凌 712100; 2 农业部西北植物营养与农业环境重点实验室,陕西杨凌 712100; 3 杨凌区农业技术推广中心, 陕西杨凌 712100)
日光温室; 番茄; 水肥减量; 产量品质; 土壤水分状况
1 材料与方法
1.1 试验区概况
表1 供试土壤基本理化性质
1.2 试验设计
温室基肥施用和植苗时灌水量各处理一致,为当地农户日光温室秋冬茬栽培番茄的平均用量(当地秋延茬施基肥,春夏茬在秋延茬收获后直接植苗或接近收获时套栽,一般不施基肥或施用量较少)。其中基肥有机肥施用干鸡粪1.68×104kg/hm2(N、P2O5、K2O含量分别为23、21、19 g/kg),折合N、P2O5、K2O用量分别为393、358、325 kg/hm2;化肥施用史丹利复合肥、过磷酸钙和硫酸钾,折合N、P2O5、K2O的用量见表2。由于当地定植苗时农户灌水量普遍较大,植苗至第一穗果膨大期(8月5日至9月18日)作物需水量较小,视天气农户一般不灌水或少量补水。此后每穗果膨大期(间隔10 d左右)灌水追肥一次,因此水肥减量处理从第一穗果膨大期后开始。
表2 不同处理施肥量(N-P2O5-K2O)和灌水量
试验设3个处理(表2): 常规水肥处理(CK),植苗后水肥一体化灌水追肥期水肥分别减量20%(S1)及40%处理(S2),即与常规处理比水分总量分别减少17%和34%,化肥总施氮量减少18%和36%,总P2O5减少5%和9%、总K2O分别减少13%和26%。其中常规处理灌水量为事先测得的当季作物冠层水面蒸发量 (100%ET),追肥量为农户的平均用量(表2)。每处理重复3次,完全随机区组排列,小区面积33.6 m2,每小区栽植8行,160株番茄。水肥一体化追肥施用尿素和圣诞树复合肥 (N-P2O5-K2O为19-8-27)。
1.3 测定项目及方法
土壤水分监测 番茄定植后,各处理小区0—20 cm和20—50 cm土层均埋设一组英国Skye公司mini DataHog2自动连续数采张力计,监测土壤水势变化。然后根据事先测得日光温室0—20 cm和20—50 cm土层水分含量与此张力计监测的土壤水势建立土壤水分特征曲线,将监测的土壤水势转换为土壤含水率,进而计算一定厚度土层和面积的土壤贮水量等。
图1 不同水肥处理0—20 cm和 20—50 cm土壤含水率变化Fig.1 Changes of soil water contents in 0-20 cm and 20-50 cm soil layers in different treatments
作物冠层水面蒸发量测定 用直径20 cm的蒸发皿测定日光温室内番茄冠层的水面蒸发量[1]。
产量及番茄养分吸收和品质测定 番茄开始成熟后分小区连续计产;此外,在番茄盛果期时每小区采集具有代表性植株5株,分别测定根、茎、叶、果实生物量及氮、磷、钾含量,番茄果实可溶性糖、有机酸、维生素C等品质指标。氮、磷、钾采用 H2SO4-H2O2消煮,半微量凯氏法测定全氮,钒钼黄法测定全磷,火焰光度法测定全钾;可溶性糖含量采用蒽酮法测定;有机酸采用酸碱滴定法测定;维生素C采用2,6-二氯靛酚滴定法测定。
1.4 数据处理
试验数据采用 Microsoft Excel软件处理,SAS 8.1进行方差分析。
2 结果与讨论
2.1 水肥减量对土壤水分动态和水分损失的影响
图2 不同处理0—20 cm和 20—50 cm土层土壤在不同水分范围的天数占该生育阶段总天数的比例Fig.2 The proportion of days of different soil moisture ranges in the total growth days of the growth stages of tomato in 0-20 cm and 20-50 cm soil layers under different treatments
图3 不同处理0—50 cm土壤有效贮水量损失与冠层水面蒸发量Fig.3 The loss of available water storage in 0-50 cm soil depth and canopy evaporation of tomato in different treatments
图3显示,随灌水量减少0—20和20—50 cm土层有效贮水量损失均呈降低趋势,而20—50 cm土层有效贮水量损失降低趋势还说明灌水量高的处理可能存在有效贮水向50 cm以下再分布损失,与前述分析是一致的。CK、S1和S2处理0—50 cm土壤有效贮水量损失分别为冠层水面蒸发量的77.36%、67.20%和53.46%,平均为65.41%。各处理灌溉量均高于土壤有效贮水量损失,而以S2处理的灌溉量(为冠层水面蒸发量的65.56%)与土壤有效贮水量损失平均最为接近,从水量平衡看S2处理的灌溉量较为合理。
2.2 不同处理对番茄养分吸收的影响
由表3可以看出,番茄吸收的氮、磷和钾养分主要分布在果实和叶片中,其中果实吸收的氮、磷和钾分别占植株总携出量的52.14%、58.13%和64.10%,叶片分别占37.02%、25.18%和30.07%,果实和叶片占氮、磷、钾总携出量的89.14%、83.28%和94.11%。不同处理番茄根、茎、叶、果实干物质和养分携出量有所差异,但差异均不显著。主要是由于不同处理虽然灌水和施肥量不同,但土壤水分的供应均为充足,同时,施用化肥提供的养分量已超过番茄的养分携出量,种植前温室土壤养分含量亦较高(表1),此外还有有机肥提供的养分量;因此,虽然追肥期水肥比常规处理分别减少20%和40%,但对养分的吸收并无显著影响。
2.3 不同处理对番茄产量、品质和灌水利用率的影响
不同处理番茄产量、单果重、维生素C、可溶性糖和有机酸等虽有所差异,但均未达显著水平(表4), 而灌水利用率极显著提高,从CK处理的55.07 kg/m3提高到S2处理的83.17 kg/m3,提高了51.03%。王峰等[19]在甘肃研究番茄全生育期灌水量由2521 m3/hm2减少到2241 m3/hm2后,灌水利用率由68.38 kg/m3提高至77.87 kg/m3,产量无显著差异;Eugenio Nardella等[21]在意大利,以当地最大蒸发量70%为灌溉量的灌水利用率为15.35 kg/m3,较日最大蒸发量灌水利用率11.97 kg/m3提高22%,产量亦无显著差异;本研究结果与其他国内外一些研究者结论一致。此外,与CK处理相比,S2处理可节水523 m3/hm2,节约N、P2O5、K2O肥料分别为188 kg/hm2、32 kg/hm2和158 kg/hm2;水肥减量在节约资源的同时,还减少了养分在土壤中的累积及其他不良环境效应。
2.4 合理的灌溉制度
根据本试验番茄全生育期不同水肥处理对土壤水分状况、番茄养分吸收量、产量、品质的影响,以及灌溉后土壤有效贮水量损失动态等的结果分析,结合当地温室环境内不同月份的番茄冠层水分蒸发以及当地农户管理习惯,适当降低定植和苗期灌水量,制定出适宜当地秋冬茬番茄不同生育期和对应月份合理灌溉制度(表5),为指导当地秋冬茬温室番茄水分管理提供依据。
表3 不同处理番茄生物量与养分携出量
注(Note): 同列数据后不同字母表示处理间差异达5%显著水平 Values followed by different letters in a column are significant among treatment at the 5% level.
表4 不同处理番茄果实产量、品质及灌水利用率
注(Note): 同列数据后不同小、大写字母分别表示处理间差异达5%和1%显著水平 Values followed by different small and capital letters in same column mean significant at the 5% and 1% levels, respectively.
表5 日光温室栽培秋冬茬番茄灌溉制度
3 结论
2)不同水肥处理番茄干物质累积、养分携出量、番茄产量、品质均无显著性差异,灌水利用率极显著提高,从常规水肥处理的55.1 kg/m3提高到83.2 kg/m3,节水523 m3/hm2,节约肥料分别为N 188 kg/hm2、P2O532 kg/hm2和K2O 158 kg/hm2。
[1] Wang Z Y, Liu Z X, Zhang Z K, Liu X B. Subsurface drip irrigation scheduling for cucumber (CucumissativusL.) grown in solar greenhouse based on 20 cm standard pan evaporation in Northeast China[J]. Scientia Horticulturae, 2009, 123(1): 51-57.
[2] 李若楠, 张彦才, 黄绍文, 等. 节水控肥下有机无机肥配施对日光温室黄瓜-番茄轮作体系土壤氮素供应及迁移的影响[J]. 植物营养与肥料学报, 2013, 19(3): 677-688. Li R N, Zhang Y C, Huang S Wetal. Effects of combined application of organic manure and chemical fertilizers on soil nitrogen availability and movement under water and fertilizer saving management in cucumber-tomato double cropping system[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 677-688.
[3] 袁亭亭, 杨建平, 徐坤. 秋延迟番茄氮、磷、钾优化施肥方案研究[J]. 植物营养与肥料学报, 2010, 16(5): 1246-1251. Yuan T T, Yang J P, Xu K. Study on optimization of NPK fertilization scheme of tomato in late autumn[J]. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1246-1251.
[4] 黄绍文, 王玉军, 金继运, 唐继伟. 我国主要菜区土壤盐分、酸碱性和肥力状况[J]. 植物营养与肥料学报, 2011, 17(4): 906-918. Huang S W, Wang Y J, Jin J Y, Tang J W. Status of salinity, pH and nutrients in soils in main vegetable production regions in China[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 906-918.
[5] 黄绍文. 设施番茄水肥一体化技术[J]. 中国蔬菜, 2013, (13): 40-41. Huang S W. Fertigation on tomato in the solar greenhouse[J]. China Vegetable, 2013, (13): 40-41.
[6] 虞娜, 张玉龙, 张玉玲, 等. 灌溉和施肥对温室番茄产量和品质影响效应的研究[J]. 中国土壤与肥料, 2009, (4): 31-35. Yu N, Zhang Y L, Zhang Y Letal. Study on effect of irrigation and fertilization on yield and fruit quality of greenhouse tomato[J]. Soil and Fertilizer Sciences in China, 2009, (4): 31-35.
[7] 张辉, 张玉龙, 虞娜, 等. 温室膜下滴灌灌水控制下限与番茄产量、水分利用效率的关系[J]. 中国农业科学, 2006, 39(2): 425-432. Zhang H, Zhang Y L, Yu Netal. Relationship between low irrigation limit and yield, water use efficiency of tomato in under-mulching-drip irrigation in greenhouse[J]. Scientia Agricultura Sincia, 2006, 39(2): 425-432.
[8] 曾向辉, 王慧峰, 戴建平, 彭庆彬. 温室西红柿滴灌灌水制度试验研究[J]. 灌溉排水学报, 1999, 18(4): 23-26. Zeng X H, Wang H F, Dai J P, Peng Q B. Study on irrigation regime for tomato under trickle irrigation in greenhouse[J]. Journal of Irrigation and Drainage, 1999, 18(4): 23-26.
[9] 王贺辉, 赵恒, 高强, 韩淑敏. 温室番茄滴灌灌水指标试验研究[J]. 节水灌溉, 2005, (4): 22-25. Wang H H, Zhao H, Gao Q, Han S M. Study on irrigation index for tomato under trickle irrigation in greenhouse[J]. Water Saving Irrigation, 2005, (4): 22—25.
[10] 刘学军, 张上宁, 何宝银. 日光温室番茄滴灌灌溉制度试验研究[J]. 水资源与水工程学报, 2010, 21(3): 21-24. Liu X J, Zhang S N, He B Y. Experiment on tomato irrigation schedule by drip irrigation in sunlight greenhouse system[J]. Journal of Water Resources &Water Engineering, 2010, 21(3): 21-24.
[11] 陈碧华, 郜庆炉, 杨和连, 张玉河. 华北地区日光温室番茄膜下滴灌水肥耦合技术研究[J]. 干旱地区农业研究, 2008, 26(5): 80-83. Chen B H, Gao Q L, Yang H L, Zhang Y H. Studies on water and fertilizer coupling under mulch drip fertilization on tomato in solar-greenhouse in North China[J]. Agricultural Research in the Arid Areas, 2008, 26(5): 80-83.
[12] 郭艳波, 冯浩, 吴普特. 西北地区不同土壤水分处理对温室大棚番茄产量和耗水的影响[J]. 自然资源学报, 2009, 24(1): 50-57. Guo Y B, Feng H, Wu P T. Effects of different soil moisture treatments on yield and water consumption of tomato in greenhouse in northwest China[J]. Journal of Natural Resources, 2009, 24(1): 50-57.
[13] 孙磊, 孙景生, 刘浩, 等. 日光温室滴灌条件下番茄需水规律研究[J]. 灌溉排水学报, 2008, 27(2): 51-54. Sun L, Sun J S, Liu Hetal. Water requirement rules of tomato in sunlight greenhouse[J]. Journal of Irrigation and Drainage, 2008, 27(2): 51-54.
[14] 孙健, 成自勇, 王铁良, 等. 日光温室春夏茬番茄灌溉模式试验研究[J]. 节水灌溉, 2011, (6): 1-3. Sun J, Cheng Z Y, Wang T Letal. Experimental study on suitable irrigation mode of summer tomato in greenhouse[J]. Water Saving Irrigation, 2011, (6): 1-3.
[15] 农业部. 水肥一体化技术指导意见[J]. 中国农技推广, 2013. Ministry of Agriculture. Issued guidance on the integration of water and fertilizer technology[J]. China Agricultural Technology Extension, 2013.
[16] Li Y J, Yuan B Z, Bie Z Letal. Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions[J]. Agriculture Water Management, 2012, 109: 30-35.
[17] 刘浩, 段爱旺, 孙景生, 刘祖贵. 基于Penman-Monteith 方程的日光温室番茄蒸腾量估算模型[J]. 农业工程学报, 2011, 27(9): 208-213. Liu H, Duan A W, Sun J S, Liu Z G. Estimating model of transpiration for greenhouse tomato based on Penman-Monteith equation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(9): 208-213.
[18] 崔宁, 张玉龙, 刘洋, 等. 节点渗灌灌水控制上限对番茄生长及产量和品质的影响[J]. 北方园艺, 2010, (7): 53-56. Cui N, Zhang Y L, Liu Yetal. Effect of different upper irrigation limit on growth, yield and quality of tomato under node permeation irrigation[J]. Northern Horticulture, 2010, (7): 53-56.
[19] 王峰, 杜太生, 邱让建, 董平国. 亏缺灌溉对温室番茄产量与水分利用效率的影响[J]. 农业工程学报, 2010, 26(9): 46-52. Wang F, Du T S, Qiu R J, Dong P G. Effects of deficit irrigation on yield and water use efficiency of tomato in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(9): 46-52.
[20] 范凤翠, 张立峰, 李志宏, 等. 日光温室番茄控制土壤深层渗漏的灌水量指标[J]. 农业工程学报, 2010, 26(10): 83-89. Fan F C, Zhang L F, Li Z Hetal. Tomato irrigation index for soil water leakage control in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10): 83-89.
[21] Nardella E, Giuliani M M, Gatta G, Caro A D. Yield response to deficit irrigation and partial Root-Zone drying in processing tomato (LycopersiconesculentumMill.)[J]. Journal of Agricultural Science and Technology, 2012, 2: 209-219.
[22] 许金香, 高丽红. 日光温室不同栽培茬口番茄需水量初探[J]. 中国农学通报, 2005, 5(5): 308-312. Xu J X, Gao L H. Primary study on water requirement of tomato in different season in solar greenhouse[J]. Chinese Agricultural Science Bulletin, 2005, 5(5): 308-312.
[23] 韩建会, 徐淑贞. 日光温室番茄滴灌节水效果及灌溉制度的评价[J]. 西南农业大学学报, 2003, 25(1): 77-79. Han J H, Xu S Z. Water-saving effect of drip irrigation and evaluation of irrigation regimes for tomato production in solar energy greenhouse[J]. Journal of Southwest Agricultural University, 2003, 25(1): 77-79.
Effects of reducing water and fertilizer rates on soil moisture and yield and quality of tomato in solar greenhouse
LUO Qin1, CHEN Zhu-jun1,2 *, YAN Bo1, LEI Jin-fan3, ZHANG Xiao-min1, BAI Xin-lu1, ZHOU Jian-bin1,2
(1CollegeofNaturalResourcesandEnvironment,NorthwestA&FUniversity,Yangling,Shaanxi712100,China; 2KeyLaboratoryofPlantNutritionandtheAgri-EnvironmentinNorthwestChina,MinistryofAgriculture,Yangling,Shaanxi712100,China; 3YanglingAgriculturalTechnologyExtensionStation,Yangling,Shaanxi712100,China)
【Objectives】 Fertigation technology has a great potential to replace the traditional irrigation and fertilization methods in the protected cultivation in China. Soils, climate, and crops require different frequency of irrigation and fertilization. Therefore, effects of different water and nutrient treatments on soil moisture, nutrient uptake, yield and quality of autumn-winter tomato in Guanzhong Plain, Shaanxi was studied. Our aim was to setup the optimum rates of irrigation and fertilization in solar greenhouses. 【Methods】 The field trial included three treatments, the conventional treatment (CK) in which irrigation rate equaled to 100% evapotranspiration and average rates of fertilizers used by local farmers were applied (conventional fertilizer treatment), and reducing 20% and 40% of water and fertilizer rates in comparison with CK (S1 and S2). The fertilizers were added into the irrigation system with Venturi tube during the crop growth. Soil moisture in 0-20 cm and 20-50 cm layers was continuously monitored by an automatic tension meter system (Skye DataHog2, UK). Soil water content was calculated with soil water characteristic curve. water surface evaporation was determined with the evaporating dish method (diameter 20 cm), and its relationship with loss of soil available water was analyzed. The nutrient absorption, yield, quality, irrigation utilization of autumn-winter tomato in different treatments were also determined. 【Results】 1) The soil relative water contents are higher 75% in 0-50 cm soil layer in all the treatments throughout the whole growing period of tomato, indicating soil water supply is adequate for tomato growth. The soil water contents in 0-20 cm and 20-50 cm soil layers in the conventional treatment reach or exceed the field capacity after irrigation, which indicates that water infiltrated below 50 cm soil layer and would result in nutrient leaching. Compared with CK, the soil relative water contents in the treatment of reducing 40% of water and fertilizer rates are mainly in optimum range from 75% to 85%. 3)When reducing the irrigation rate, the water loss from 0-50 cm soil layer is decreased, and the loss of effective storage water equals 65.4% of the canopy water evaporation, and also equals to the irrigation amount in the S2 treatment. 3)There are not significant differences in nutrient absorption, yield and quality of tomato among the different treatments. However, the use efficiency of irrigation water is increased from 55.1 kg/m3in the conventional treatment to 83.2 kg/m3in the water and nutrient saving treatments. 【Conclusions】 The optimum irrigation rate for the solar greenhouse in the study region is 65% of water surface evaporation. The appropriate irrigation quota for the autumn-winter tomato in solar greenhouse is 1057 m3/ha, the irrigation amounts in August, September, October, November and December are 168, 169, 132, 105, and 50 m3/ha, respectively, and the time intervals of irrigation in August, September, October, and November are 20-30 days, 8-13 days, 8-13 days, and 20-30 days, respectively and the irrigation in December is dependent on climate, either less rate or no irrigation. No irrigation is needed in January.
solar greenhouse; tomato; water and fertilizer saving; yield and quality; soil moisture
2014- 01- 02 接受日期: 2014-08-26
陕西省农业攻关项目(2014K01-14-03);国家“十二五”科技支撑计划项目课题(2012BAD15B04);高等学校学科创新引智计划(B12007);中英农业生产中养分资源可持续利用合作项目资助。
罗勤(1989—),女,新疆塔城人,硕士研究生,主要从事设施栽培水肥调控技术研究。E-mail: luoqin153@163.com * 通信作者 Tel: 029-87082793, E-mail: zjchen@nwsuaf.edu.cn
S152.7; S614.2.606
A
1008-505X(2015)02-0449-09