从历史名题中学数学方法
2015-06-10洪飞
初中生之友·中旬刊 2015年8期
洪飞
在历史的长河中,留下了许多构思巧妙的有趣的名题。我们在探讨其巧妙解法的同时,要进一步挖掘蕴含在其中的数学方法,以提高解题能力,培养学习数学的兴趣。
l.農夫锄草问题
一个农场有两块草地,大的一块是小的一块的两倍。上午农夫们在大块地上锄草,午后分两组,一半人继续留在大块地上,到晚上时恰好锄完。另一半人到小块地上去锄草,到晚上还剩一小块,这一小块地次日由一个农夫锄草,恰好需一天工夫。问:这农场有几个农夫?
答:老人共有9个儿子,每人分得900克朗。
以上两题都多设了一个未知数y,是为了便于利用题设条件列出方程,但在后面的求解过程中,y又自然消失了从而可求出x。可以看出,未知数y起了一个辅助作用,因此,我们把这种数学方法称为辅助未知数法(也称参数法)。辅助未知数法在数学解题中有广泛应用。下面举例说明这种数学方法的运用。
例题: 甲、乙、丙三车各以一定的速度从A地开往B地,乙比甲迟10分钟出发,出发后30分钟追上甲;丙比乙迟15分钟出发,出发后45分钟追上甲,问丙出发后多少分钟追上乙?
分析:这是一道行程问题,题目中只有时间数据,难以列出方程。若设三车速度当S甲=S乙时,则可顺利找到等量关系。
解:设丙出发后x分钟追上乙,三车速度分别为V甲、V乙、V丙。因两车追及相遇时,起点至相遇点的路程相等,故依据题意可得:
所以 x=90。
答:丙出发后90分钟追上乙。