APP下载

高温后灰岩单轴压缩的分形特征研究①

2015-06-09朱术云武富强

地震工程学报 2015年2期
关键词:碎块分维单轴

张 锐, 朱术云, 孙 强, 武富强

(1.中国矿业大学 资源与地球科学学院,江苏 徐州 221116; 2.河南省航空物探遥感中心,河南 郑州 450053)

高温后灰岩单轴压缩的分形特征研究①

张 锐1, 朱术云1, 孙 强1, 武富强2

(1.中国矿业大学 资源与地球科学学院,江苏 徐州 221116; 2.河南省航空物探遥感中心,河南 郑州 450053)

温度是影响岩石物理力学性质的重要因素,对不同温度作用后灰岩单轴压缩的碎块进行统计分析,结果表明灰岩的块度分布是个分形,分形维数D是反映高温后灰岩破碎程度恰当的特征统计量,同时D表现出随温度的增大而减小的性质。在此基础上,通过扫描电镜分析,获得温度对岩石力学性质的影响主要与组成岩石矿物性质和内部微观结构有关,而不同温度的作用会影响岩石矿物组成成分和岩石的晶格结构,在灰岩的扫描电镜结果对比中已发现微观形貌特征的差异,这可从内在机制方面解释不同温度下灰岩分维值变化特征。

高温; 单轴压缩; 分形维数; 扫描电镜

0 引言

岩石是一种结构复杂的地质材料,无论在爆破还是在机械作用下其损伤破坏的碎块块度都看似杂乱无章。1986 年D.L.Turcotte 曾对许多种地质材料在不同破碎方式下的碎块块度分布进行了统计分析,得出块度分布是个分形[1]。国内外不少学者对相关岩石破碎进行了研究[2-7],但对不同温度作用后灰岩的破碎分形特征研究相对较少。为此,本文在对高温后灰岩在单轴压缩破坏方式下的块度进行统计分析基础上,结合微观结构,采用分形方法对其进行破坏特征探讨,以期得到一些有益的结果。

1 实验过程及结果

将灰岩加工成直径和高度分别为50 mm和100 mm的标准圆柱体试样,选用中国轻工业陶瓷研究所窑炉开发中心研制的GWD-02A型高温炉进行高温加热,温度取值为25℃(常温)、50 ℃、100 ℃、200 ℃、340 ℃、400 ℃、450 ℃、500 ℃、550 ℃和600 ℃。每个温度下灰岩试样选取两组在RMT-150B 型伺服试验机上进行单轴压缩试验,为减小端部效应在每组灰岩试样两端添加刚性垫片。轴向加载时采用位移控制进程,加载速率为0.002 mm/s。

灰岩试样的破坏是先从试样内部开始,主要是在外部轴向荷载作用下试样发生变形,其黏聚力逐步丧失,并逐渐在试样内部产生新的微裂纹,同时也使试样内部的原生裂纹再扩展,在不断加荷载的过程中,这种状况不断发展,导致灰岩试样的最终破坏[8-9]。按照加热的顺序依次对灰岩试样进行单轴压碎试验,试验中灰岩试样表现出差异现象。试样受到轴向载荷发生破坏,温度低时试样多发生轴向劈裂,爆裂强度大。有时试样呈现炸开状态(图1),但是高温时压裂爆开的强度明显变小,出现劈理数量也变少。

试验结束后完整地收集每一组灰岩碎块,将灰岩碎块按质量相近的原则分组,称量每组碎块的质量及计算每组碎块的块数(图2),称量仪器采用精度为0.1 g的电子秤。

2 块度分维的定义和计算

图1 不同温度下灰岩抗压强度试验破坏特征Fig.1 Failure characteristics of the limestone in compressive strength test at different temperatures

岩石破碎过程与岩块形状具有自相似性,碎块尺度分布具有幂函数特征,是统计意义上的分形。因此由分形的基本定义:

图2 灰岩分组示意图Fig.2 Groups of the limestone fragments

(1)

式中,Ri是岩块的特征尺度;Ni是特征尺度Ri的岩块数目;C是比例常数;D是分形维数。

令R为岩块的特征尺度,N为特征尺度大于等于R的岩块数目,分形定义被推广到连续的情形:N=CR-D。假设块度分布是分形分布,则按尺度-频率关系有:

(2)

其中Rmax是碎块的最大特征尺度;N0是具有最大特征尺度的碎块数[10-12]。

单轴压缩的碎块具有很大的不规则性,为了方便在实验统计分析时采用岩石碎块的质量-频率的分布的分形维数,即:

(3)

式中,M为碎块质量;N为质量大于等于M的碎块数;Mmax为最大碎块质量;N0为具有最大质量Mmax的碎块数;b为质量-频率分布指数。近似化处理下碎块的质量与尺寸存在一定的相关性:M∞R3,所以D=3b[11]。

由实验统计数据绘制不同温度下灰岩分维值图(图3),可以发现灰岩碎块的分维数在1.2~2.5之间。同时还可以看出灰岩碎块的分维数和温度分布大致呈线性反比关系,相关系数R2=0.921 3。实验统计数据和单轴压缩实验灰岩试样表现出来的差异现象相符合。

表1 50 ℃灰岩分维计算

图3 不同温度下灰岩分维值分布Fig.3 Bistribution of limestone fractal dimension value at different temperatures

分析发现分形维数大的试样,碎块多,体积小,破碎程度高;分形维数小的试样,碎块少,体积大,破碎程度低。结合实验试样压碎的现象可得到灰岩分形维数和温度存在较好的负相关性。

3 对分维结果机理的讨论

温度对岩石力学性质的影响主要与组成岩石矿物性质和内部微观结构有关,不同温度的作用会影响岩石矿物组成成分和岩石的晶格。岩石受热后,由于组成岩石的各种矿物热膨胀不同,矿物颗粒边界会出现裂纹,即岩石的热开裂现象。研究结果发现,岩石发生热开裂后,其内部形成新的裂隙网络。热开裂能改变岩石内部的微结构,既增加裂隙的长度,又增加裂隙的密度[14]。通过对岩石微结构的分析,可以观测到岩石微裂隙的变化。在同一放大倍数的情况下,采用扫描电镜技术(SEM)对石灰岩在不同温度下微观形貌特征进行观察研究(图4)。

图4 不同温度下灰岩内部结构变化对比图Fig.4 Internal structural change of lirnestone at different temperatures

从图4中可以看出,在常温下岩石矿物表面比较平整,矿物颗粒整齐、紧密且呈块状。200 ℃时岩石矿物表面已经发生变化,表面变得不平整,胶结物开始分解。570 ℃时出现了跨越颗粒的较长、较宽裂隙,矿物表面更加粗糙,碎屑物质增多。

试验还发现常温下石灰岩呈灰黑色,高温后石灰岩试样变为浅灰地,分析认为随着温度的升高组成石灰岩的碳酸钙、碳酸镁等矿物颗粒发生了氧化作用使得颜色变浅[15]。同时高温对石灰岩的强度有弱化作用,从而使灰岩表现出由脆性向塑性的渐次演化。

4 结论

(1) 高温下单轴压缩实验灰岩试样表现出差异性,即温度低时试样破碎程度高,碎块多且体积小,高温时试样破碎程度低,碎块少且体积大;

(2) 灰岩碎块的分维数和温度的分布呈反比关系,根据散点图采用线性回归方法拟合曲线为:y=-0.001 9x+2.506 2,相关系数很高。

(3) 结合灰岩在不同温度下扫描电镜对比结果,高温会影响岩石的矿物成分和内部微结构,使岩石的力学性质降低,颜色变浅,导致分维值变化。

References)

[1] 高峰,赵鹏.岩石破碎程度的分形度量[J].力学与实践,1994,16(2):16-17.GAO Feng,ZHAO Peng.Rock Crushing Degree of Fractal Measurement[J].Mechanics in Engineering,1994,16(2):16-17.(in Chinese)

[2] 李德,李守巨,于申,等.压头作用下岩石破碎过程分形特性研究[J].岩土工程学报,2013,35(增2):314-319.LI De,LI Shou-ju,YU Shen,et al.Fractal Characteristics of Rock Fragmentation Process Induced by Indenters[J].Chinese Journal of Geotechnical Engineering,2013,35(Supp2):314-319.(in Chinese)

[3] 杜晶,李夕兵,宫凤强,等.岩石冲击实验碎屑分类及其分形特征[J].矿业研究与开发,2010,30(5):20-22,84.DU Jing,LI Xi-bing,GONG Feng-qiang,et al.Classification and Fractal Characteristics of the Fragments from Impacting Experiment of Rock[J].Mining Research and Development,2010,30(5):20-22,84.(in Chinese)

[4] 谢长进,王家来.结构性岩体的爆破破碎分形[J].工程爆破,1998,4(3):1-3.XIE Chang-jin,WANG Jia-lai.Fractal Fragmentation of Structural Rockmass[J].Engineering Blasting,1998,4(3):1-3.(in Chinese)

[5] 李博,孙强,王思源,等.单轴加载下砂岩声发射特征的试验分析[J].地震工程学报,2013,35(1):114-118.LI Bo,SUN Qiang,WANG Si-yuan,et al.Experimental Analysis of the Acoustic Emission Characteristics of Sandstone Specimens Under Uniaxial Loading Test[J].China Earthquake Engineering Journal,2013,35(1):114-118.(in Chinese)

[6] 柴肇云,康天合,陈维毅,等.泥岩压剪破坏裂隙演化规律及其分形特征[J].岩石力学与工程学报,2011,30(增2):3844-3850.CHAI Zhao-yun,KANG Tian-he,CHEN Wei-yi,et al.Fracture Evolutionary Rules of Mudstone under Coupled Compression and Shear and Its Fractal Characteristics[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(Supp2):3844-3850.(in Chinese)

[7] 魏国安.闽南风化凝灰岩强度特征的试验研究[J].地震工程学报,2013,35(3):625-630.WEI Guo-an.Experimental Analysis on the Strength Properties of Weathering Tufflava in the South Fujian Province[J].China Earthquake Engineering Journal,2013,35(3):625-630.(in Chinese)

[8] 宋卫东,明世祥,王欣,等.岩石压缩损伤破坏全过程试验研究[J].岩石力学与工程学报,2010,29(增2):4180-4187.SONG Wei-dong,MING Shi-xiang,WANG Xin,et al.Experimental Study of Rock Compression-damage-failure Process[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(Supp2):4180-4187.(in Chinese)

[9] 徐涛,唐春安,张哲,等.单轴压缩条件下脆性岩石变形破坏的理论、试验与数值模拟[J].东北大学学报:自然科学版,2003,24(1):87-90.XU Tao,TANG Chun-an,ZHANG Zhe,et al.Under the Conditions of Uniaxial Compression of Brittle Rock Deformation and Failure Theory Experiment and Numerical Simulation[J].Journal of Northeastern University:Natural Science,2003,24(1):87-90.(in Chinese)

[10] 高峰,谢和平,巫静波.岩石损伤和破碎相关性的分形分析[J].岩石力学与工程学报,1999,18(5):503-506.GAO Feng,XIE He-ping,WU Jing-bo.Fractal Analysis of Rock Damage and Breakage Correlation[J].Chinese Journal of Rock Mechanics and Engineering,1999,18(5):503-506.(in Chinese)

[11] 马新,郭忠印,杨群.基于分形方法的沥青混合料抗剪性能研究[J].重庆交通大学学报:自然科学版,2009,28(5):873-876.MA Xin,GUO Zhong-yin,YANG Qun.Shear Performance of Asphalt Mixtures Baded on Fractal Method[J].Journal of Chongqing Jiaotong University:Natural Science,2009,28(5):873-876.(in Chinese)

[12] 谢和平.高峰,周宏伟,等.岩石断裂和破碎的分形研究[J].防震减灾工程学报,2003,23(4):1-9.XIE He-ping,GAO Feng,ZHOU Hong-wei,et al.Fractal Study of Rock Fracture and Broken[J].Journal of Disaster Prevention and Mitigation Engineering,2003,23(4):1-9.(in Chinese)

[13] 高峰,谢和平,赵鹏.岩石块度分布的分形性质及细观结构效应[J].岩石力学与工程学报,1994,13(3):240-246.GAO Feng,XIE He-ping,ZHAO Peng.Fractal Nature and Microscopic Structure Effect of Rock Fragmentation Distribution[J].Chinese Journal of Rock Mechanics and Engineering,1994,13(3):240-246.(in Chinese)

[14] 秦本东,罗运军,门玉明,等.高温下石灰岩和砂岩膨胀特性的试验研究[J].岩土力学,2011,32(2):417-422,473.QIN Ben-dong,LUO Yun-jun,MEN Yu-ming,et al.Experimental Research on Swelling Properties of Limestone and Sandstone at High Temperature[J].Rock and Soil Mechanics,2011,32(2):417-422,473.(in Chinese)

[15] 谢卫红,李顺才,肖永红.温度对岩石损伤和变形破坏的影响[C]//第十三届全国结构工程学术会议论文集.2004:412-415.XIE Wei-hong,LI Shun-cai,XIAO Yong-hong.Effects of Temperature on Damage and Fracture of Rock[C]//The Thirteenth National Conference on Structural Engineering.2004:412-415.(in Chinese)

Fractal Characteristics of Limestone after High Temperature under Uniaxial Compression

ZHANG Rui1, ZHU Shu-yun1, SUN Qiang1, WU Fu-qiang2

(1.SchoolofResourcesandEarthScience,ChinaUniversityofMiningandTechnology,Xuzhou,Jiangsu221116,China;2.HenanAeroGeophysicalSurveyandRemoteSensingCenter,Zhengzhou,Henan450053,China)

Temperature is an important factor that influences the physical and mechanical properties of rocks.Many scholars have studied various types of rock crushing, but few have examined the characteristics of crushed limestone previously exposed to different temperatures.This study involved a heating limestone specimen, 50 mm in diameter and 100 mm in height, in a high temperature furnace heating cylinder before performing a uniaxial crushing experiment.Various phenomena were observed including axial splitting and bursting strength at low temperature.However, the strength of fracturing and splitting at high temperature decreased significantly as cleavage was simultaneously reduced.Sample pieces were completely reassembled and similarly sized fragments grouped together.Fractal mathematical theory applied to the analysis of rock fragments indicated that limestone block distribution is a fractal.Therefore, the fractal dimensionDwas considered an appropriate statistic to represent the characteristics of limestone crushed after exposure to high temperatures.The fractal dimensionDhas a negative correlation with temperature where it decreases with increasing temperature.The experimental data was represented in the rectangular coordinate system by plotting temperature on theXaxis and fractal dimension on theYaxis in a scatter plot.Linear regression used for curve fitting the data resulted iny=0.001 9+2.506 2xand a very large correlation coefficient.The observed influence of temperature on limestone mechanical properties mainly involved mineral physical properties and changes in microstructure.Mineral composition and crystal lattice structure may change when a rock is exposed to different temperatures.Fragment comparison with scanning electron microscope (SEM) revealed that limestone subjected to high temperature had different microstructural characteristics than untreated limestone.Room temperature limestone had a smooth surface.Limestone subjected to high temperatures had an uneven surface and partially broken cement.The rock surface appeared to contain long, wide fissures across grains, rough mineral grain surfaces, and increased detrital material.These characteristics reduced the mechanical properties and caused the change in fractal dimension.This internal mechanism in the limestone explains why fractal dimension decreases with increased temperature.In addition, limestone samples were gray-black at room temperature and light gray when heated to high temperatures.High-temperature exposure caused calcium carbonate formation and magnesium carbonate oxidation that led to the observed color change.

high temperature; uniaxial compression; fractal dimension; scanning electron microscopy (SEM)

2014-12-27

国家重点基础研究发展计划(973)项目(2013CB036003);中国博士后科学基金(2014T70669)

张 锐(1990-),男,山东滕州人,硕士研究生,主要从事煤矿工程地质和岩土工程方面的学习工作.E-mail:541530487@qq.com

TU452; TD315

A

1000-0844(2015)02-0541-05

10.3969/j.issn.1000-0844.2015.02.0541

猜你喜欢

碎块分维单轴
基于内表面特征的碗状碎块匹配方法
希腊遗址
单轴压缩条件下岩石峰后第Ⅱ种类型应力——应变曲线的新解释
改进的投影覆盖方法对辽河河道粗糙床面分维量化研究
CFRP-钢复合板的单轴拉伸力学性能
PVDF薄膜单轴拉伸及交流极化特性研究
浅析枪击钢化玻璃矩形碎块特征
沥青混合料路用性能与分维数的关系分析
斜单轴跟踪式光伏组件的安装倾角优化设计
基于分形渗流模型的导电沥青混凝土的分维计算