APP下载

采用计算流体力学仿真优化50 L发酵罐搅拌系统

2015-05-30罗宇笛李啸石小丹

天津农业科学 2015年5期
关键词:含率罐顶发酵罐

罗宇笛 李啸 石小丹

摘 要:采用计算流体力学软件 Fluent 对50 L全自动发酵罐内不同两层桨叶组合的搅拌效果进行气液两相流模拟。针对发酵罐模拟了4种桨叶组合,对比分析4种组合的速度云图,剪切速率云图以及气含率分布云图,以此优化出一种搅拌效果较好的桨型组合。根据模拟结果,初步判断组合B的混合效果最好;试验验证组合B的酶活达到193.20 U·mL-1,与原始组合相比,提高了1.1倍。

关键词:计算流体力学;50 L发酵罐;桨叶组合优化;网格划分

中图分类号:S817.2 文献标识码:A DOI 编码:10.3969/j.issn.1006-6500.2015.05.012

发酵罐是工业上用来进行微生物发酵的设备,被广泛应用于饮料、化工、食品、乳品、佐料、酿酒、制药等行业。设计成熟的发酵罐物料与能量传递性能强,有利于发酵生产及降低能耗[1]。按照设备的类别,发酵罐可分为机械搅拌通风发酵罐和非机械搅拌通风发酵罐,其中,机械搅拌通风发酵罐在工业上使用较多。通常,此类发酵罐的高径比大于1,罐内会装备多层搅拌叶轮,以求达到较均匀的传质混合效果和较好的气含率[2-5]。

传统发酵罐的设计主要依靠实际发酵过程中所积累的经验,试验研究手段存在投资大、周期长、测量困难、效果差等缺点[6]。因此,寻找一种能够节约成本、缩短开发周期的研究方法显得尤为重要。近年来,基于计算流体力学(CFD)的理论与方法,借助计算机进行仿真模拟的技术在发酵罐设计方面应用广泛,生物反应器的设计发展迅速[7-8]。

目前,利用计算流体力学相关软件对发酵罐内流场的研究多集中在6直叶圆盘涡轮桨、半圆管圆盘涡轮桨等径流桨,且绝大多数情况下只是对一种桨叶的两层组合甚至单层桨叶进行研究[9]。本研究对50 L全自动发酵罐设计了4种不同的2层桨叶组合,并采用CFD软件Fluent模拟气液两相流。通过综合分析计算结果,得出最优的两层搅拌器组合。

1 构建模型及设计搅拌器组合

1.1 发酵罐初步建模

需要建模的生物反应器为国强牌FUS-50L(A)发酵罐,搅拌器的类型有6直叶圆盘涡轮桨、半圆管圆盘涡轮桨以及四宽折叶轴流桨3种,所建模型见图1~2,具体参数如表1所示。

1.2 桨叶组合设计

底部桨叶是决定气液分散效果的关键[10]。本文所模拟的桨叶组合有4种,如图3所示。

1.3 模拟工况条件

模拟物料参数:见表2。

模拟工况条件:通气量 1. 2 vvm,搅拌转速为 200 r·min-1。

2 CFD构建模型及仿真计算

2.1 控制方程

CFD模拟气液两相流动的方法基于Navier-Stokes 方程建立,该方程是流体力学中描述黏性牛顿流体的方程,能展示出液体的黏度。纳维—斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。方程介绍见文献[5]。

2.2 模型建立、简化及网格划分

发酵罐模型建立首先在软件CAD 2010上完成,并且可以成功导入到Fluent的前处理软件Gambit中;然后,在Gambit 2.4.6上修改简化模型,比如去掉探头和电极,以达到适合模拟计算的标准;最后,选取整个罐体及内部流体为研究对象,合理分为桨叶区域和罐体区域,在专业的CAE前处理软件ICEM CFD中采取罐体区域划分高质量结构化网格(六面体),搅拌器区域划分非结构化网格(四面体、三棱柱与金字塔混合),并充分考虑到网格敏感度[3]及计算机的计算性能,经过多次试验计算,最终确定网格总数量约为176万。

2.3 模拟方法与边界条件

模拟通气搅拌反应器的一大难题是如何处理好运动区域(搅拌桨叶和搅拌轴)与静止区域(挡板和壁面等)之间的相互作用[6]。多重参考系法(Multi-reference frame,MRF)是一种经典的处理方法, 采用两种不同的参考系分别计算,桨叶区域采用旋转坐标系,其他区域采用静止坐标系,具有计算量小、计算速度较快的特点[7]。同时,选择Eulerian-Eulerian 模型作为多相流模型,标准k-ε模型作为湍流模型。第二相为空气,设置气泡粒径为10-5 m。

边界条件中,将罐顶的液面设置为压力出口(Pressure outlet),空气分布器的进气横截面设置为速度入口(Velocity inlet),罐体内壁、挡板、搅拌轴和桨叶全部设置为无滑移壁面(No slip wall)。

3 结果与分析

3.1 4种桨叶组合速度云图的比较

图4为在1.2 vvm,200 r·min-1工况下4种桨叶组合的速度云图。从图4中不难看出,4种桨叶组合的桨叶叶端皆为高速区域。并且,各种桨叶组合都有或大或小的液相死区,组合A与组合C死区较大,组合B与组合D死区较小。

另外,组合A和组合B的特征为在两层桨叶之间的速度分布均匀,但罐顶与罐底的情况较差,顶部尤为明显;组合C和组合D的特征为罐顶部分速度分布略强于组合A及组合B,但罐体中部区域的速度控制却有所下降。经过初步分析及推论,造成区别的原因为6直叶圆盘涡轮桨与四宽折叶轴流桨的造型特征不同。

3.2 4种桨叶组合剪切速率的比较

图5为1.2 vvm,200 r·min-1工况下4种桨叶组合的剪切速率图。通过观察并与图4比较不难发现,剪切速率的分布情况与速度云图有一定的相关性,即4种桨叶组合叶端位置都存在最大剪切速率,组合B的剪切速率在4种桨叶组合中最大。需要一提的是,空气分布器附近的剪切速率也不小,也间接说明了通气对整个流场的影响。

3.3 4种桨叶组合气含率分布的比较

气含率是衡量发酵罐设计质量的一大指标。在发酵过程中,绝大多数微生物培养都要通入无菌空气进行好氧发酵;相对的厌氧发酵也有连续性或者间歇性通入氮气的发酵案例。通气不仅是给微生物培养提供必要的生理条件,而且对发酵罐的流场也有一定的影响,能提高罐内的混合效果,从而影响发酵生产。

从图6中可以看出,4种桨叶组合的气含率分布都有各自的特点。

组合A在两个桨叶之间的区域,气含率分布较好,但是罐顶区域及罐底区域分布较差,原因可能是6直叶圆盘涡轮桨的径向作用能力较强,轴向作用能力较弱;组合B的气含率分布与组合A相似,但是罐底区域的分布较好,充分说明了半圆管圆盘涡轮桨不仅径向作用强,而且有不错的轴向混合效果[11];组合C在罐顶部分区域的分布较好,两个桨叶之间的区域混合不足,也是由于四宽折叶轴流桨的构造所决定的;组合D较组合C罐底分布有所改善,罐顶及两桨叶之间区域气含率分布有所降低,说明不同桨叶组合相互会产生影响,从而影响整个流场的情况。

3.4 验证试验

通过以上分析综合评测4种桨叶组合的混合能力,初步判断组合B的作用效果最好。以重组大肠杆菌产α-环状葡萄糖基转移酶实际发酵试验对4种桨型组合进行验证。

试验结果表明,组合B的菌体生长情况以及酶活都要高于组合A(原始桨叶):组合B的酶活达到193.20 U·mL-1;组合A的酶活达到175.64 U·mL-1。组合C与组合D的发酵情况并不乐观,不如组合A的发酵效果,因此具体数据不在这里给出。

另外需要一提的是,由于组合C与组合D的上层桨叶具有较强的轴向作用,而罐体的中部又没有相对较强的径向作用,因此在发酵过程中产生了大量气泡,气泡较组合AB多出3倍以上。此现象给随后的研究提供了参考。

4 结 论

(1) 通气不仅能给微生物培养提供必要的生理条件,而且对发酵罐的流场也有一定的作用,能改善罐内的传质情况,促进发酵生产。

(2)不同桨叶组合可产生不同流场,并且会产生或大或小的液相死区。不同的桨叶类型、组合、安装位置、通气条件等会产生不同位置和大小的液相死区。

(3)两层桨叶组合对发酵罐内的流场控制稍显不足,还是要通过建立三层桨叶甚至四层桨叶的组合来提高发酵罐的整体性能。

(4) 经实际发酵验证后,组合B的酶活为组合A的1.1倍。

参考文献:

[1] 张永震. 搅拌釜式生物反应器的计算流体力学模拟[D]. 天津:天津大学, 2005.

[2] Li X, Zhang J, Tan Y L, et al. Effects of flow field on the metabolic characteristics of Streptomyces lincolnensis in the industrial fermentation of lincomycin[J]. Journal of Bioscience and Bioengineering, 2013, 115(1): 27-31.

[3] Ricardo G A D, Ralf T. Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller[J]. Bioprocess Biosyst Eng, 2014, 37: 365-375.

[4] 夏建业, 张嗣良, 唐寅. 不同搅拌系统气液氧传递的计算流体力学模拟[J]. 化学工程, 2009(8): 28-31.

[5] 王立成. 带导流筒搅拌槽中液—固—固三相流场的实验与模拟研究[D]. 天津:天津大学, 2010.

[6] 王永红, 夏建业, 唐寅, 等. 生物反应器及其研究技术进展[J]. 生物加工过程, 2013(2): 14-23.

[7] 胡效东, 田强, 戚振,等. 基于滑移网格的反应釜内部流体动力学特性研究[J]. 压力容器, 2013(7): 30-38,55.

[8] 张雪雯. 搅拌器结构对搅拌槽内气液分散特性影响的数值模拟[D]. 北京:北京化工大学, 2010.

[9] 倪伟佳. 不同搅拌桨叶组合条件下的CFD数值模拟及头孢菌素C发酵性能比较[D]. 无锡:江南大学, 2012.

[10] 徐健, 刘孝光, 潘培道. 机械搅拌通风发酵罐内气液两相流的仿真模拟[J]. 包装与食品机械, 2006(6): 10-13.

[11] 张雪雯, 李志鹏, 高正明. 双层半圆管盘式涡轮桨搅拌槽气液分散特性的数值模拟[J].北京化工大学学报:自然科学版, 2011(2): 1-6.

猜你喜欢

含率罐顶发酵罐
餐厨废水和固渣厌氧发酵试验研究
倾斜热管湍流床的气固流动特性
加温加压下CFD-PBM 耦合模型空气-水两相流数值模拟研究
发酵罐不锈钢换热盘管泄漏失效分析
常压储罐罐顶结构力学性能分析
大型LNG储罐罐顶气压顶升作业动力系统的设计与控制
浮选柱气含率的影响因素研究进展
10万m3LNG储罐罐顶气升技术措施及控制浅析
利用计算流体力学技术分析啤酒发酵罐构型对温度和流动的影响
30L发酵罐培养枯草芽孢杆菌产高密度芽孢的研究