APP下载

浅谈对学生发散思维的培养

2015-05-15杨守晖

博览群书·教育 2015年1期
关键词:外角内角思维能力

杨守晖

摘 要:培养学生发散思维能力是初中数学教学目的之一。在教学中。首先教育学生要从多个方面、多个角度去思考问题,寻找解题方法。其次为培养学生发散思维创设内、外部环境。最后运用不同解题方法培养学生发散思维。

关键词:数学;发散思维

所谓发散思维是不依常规,寻求变异,对给出的材料、信息从不同角度,向不同方向,用不同方法或途径进行分析和解决问题的一种思维方式。这种思维方式的最基本的特色是:从多方面、多思路去思考问题,而不是囿于一种思路,一个角度,一条路走到黑。它主要特征是:多向性、变通性、独特性。事实上,在创造性思维活动中,发散性思维又起着主导作用,是创造性思维的核心和基础。数学教学其实是数学思维活动的教学。学习数学高有开思维,在数学思维过程中最高品质,最高层次,而又最可贵的是创造性思维品质。其实数学家创造能力的大小是与他本身的发散思维能力成正比的,即是说:科科学家的创造能力可用公式估计:创造能力=知识×发散思维能力。而加强发散思维能力的训练,是培养学生创造性思维的重要环节。

一、培养学生发散思维的意义

首先,能够较好地培养学生的思维能力和分析、解决问题的能力。发散思维的核心是问题发散,是由此及彼的层递、比较与分析,是将已有知识和新知识的融合,是理论与具体例证的相互印证。所以,学生的思维在教学过程中能够得到多层面的锻炼。

其二,可以使教材的知识点更系统、更符合认知规律,有利于教师完成知识点间的过渡和衔接。

其三,可以扩大知识点的范围,扩充教材容量,弥补教材对知识点解释方面的一些欠缺。

其四,能使学生适时地对旧知识进行复习和回顾,能很好地为以后要学的知识做好铺垫,并能将新旧知识串联在一起,加强理解和记忆。

由此可知,数学发散思维的培养对数学学习有重要的作用,因此在教学中,要加强对学生发散思维的培养。在实际教学中可采用以下几个方面去培养学生的发散思维能力。

二、培养学生发散思维的方法

1.营造愉悦的氛围,创设发散思维的情景

营造愉悦的氛围,创设发散思维的情景,给学生提供独立思考问题、自己提问题的条件与机会,为发散思维的培养创造良好的内、外部的环境。

教师在课堂上要善于创设思维情景,引导学生积极思维,运用已学过的知识去解决新问题。教师应给学生留足空间,尊重学生的爱好、个性和人格,以平等、宽容、友善的态度对待学生,使学生能够与教师一起参与教学活动,真正做学习的主人,形成一种宽松和谐的教育环境。只有在这种氛围中,学生才能充分发挥自己的聪明才智和创造想象的能力。在创设思维情境过程中,笔者发现组织课堂讨论是一种非常有效的方法,课堂讨论能培养学生敢于提问题、敢于批判、敢于质疑的精神,有利于学生之间的多向交流,取长补短。所以,教师应有意识地搞好合作教学,使教师、学生的角色处于随时互换的动态变化中,设计集体讨论,差缺互补,分组操作等内容,锻炼学生的合作能力。

2.激励学生“联想”、“猜想”,培养学生的发散思维能力

数学家发现数学规律的过程,往往是先有一个猜想,而后对猜想进行验证或修正的过程,而猜想又往往是以联想为中介的。在新课程标准下,联想和猜想的数学思维方法在数学学习中时常显现,作为现阶段的初中数学教师,应不断改变教学模式和方式,加强学生对联想和猜想的数学思维方法的指导。

联想是由来源材料分化多种因素,形成的发散思维的中间环节。善于联想,就是善于从不同的方面思考问题,对一类型的题能联想到多种方法。例如有些题目,从叙述的事情上看,不是工程问题,但题目特点却与工程题目相同,因此可用工程问题的解题思路去分析、解答。又如多边形内角和与外角和定理的学习探讨,就可以从三角形、四边形等特殊图形的内角和与外角和定理的探讨入手,引导学生经过一个顶点画对角线,将多边形分成若干三角形然后再进行内角和的讨论;再从外角与相邻的内角的关系出发探讨外角和,从而得出猜想。在这里,三角形,四边形的内角和与外角和的探讨方法便是参照,通过类比猜想得出正确结论。这类题目不仅题型新,而且扩大了知识和能力的覆盖面,通过题目所提供的结构特征,鼓励、引导学生大胆猜想,充分发挥想象能力。

3.在多种形式的训练中,培养学生的发散思维能力

在中学数学教学过程中,教师可结合教学内容和学生的实际情况,采取多种形式的训练,培养学生思维的敏捷性和灵活性,以达到诱导学生思维发散,培养发散思维能力的目的。这种思维习惯是指问题的结论确定以后,尽可能变化已知条件,进而不同的角度,用不同的知识来解决问题。这样,一方面可以充分揭示数学问题的层次。另一方面又可以充分暴露学生自身的思维层次,使学生从中吸收数学知识的营养。在教学中,我们常常会遇到类似的问题,为了实现某个目标,要首先设计实现这一目标的各种可能性方案。加强学生这方面能力的培养,也是对学生进行素质教育的一个方面。适当进行“一题多解”、“一题多变”、“一题多问”等教学活动,培养学生的发散思维。

(1)一题多变。是对题中的条件、问题、情节作各种扩缩、顺逆、对比或叙述形式的变化,让学生在各种变化了的情境中,从各种不同角度理清问题间的逻辑关系。采取步步变化深入,既发展了学生的探究思维能力,又综合性地复习与巩固了已学的有关知识,可取得较好的教学效果。对题中的条件、问题、情节作各种扩缩、顺逆、对比或叙述形式的变化,让学生在各种变化了的情境中,从各种不同角度认识数量关系。

(2)一题多解。是多角度地考虑同一个问题,找出各方法之间的关系和优劣。在条件和问题不变的情况下,让学生多角度、多侧面地进行分析思考,探求不同的解题途径。一题多解的训练是培养学生发散思维的一个好方法。也可以通过纵横发散,使知识串联、综合沟通,达到举一反三、融会贯通的目的。

(3)一题多问。是利用一个题设多个结论来培养学生发散思维。提供某种数学情境,调度学生多方面的旧知、技能或经验,组织议论,引起思维火花的撞击。“业精于勤”。只要我们在教学中运用以上各种解题方法培养学生,让学生去理解各知识点之间的联系,触类旁通,使学生的思维时常处于多向、发散、开放状态,让他们去发现问题,从而使他们的思维上升到一个新的领域。

总之,发散思维是多方向性和开放性的思维方式,它同单一、刻板和封闭的思维方式相对立,它承认事物的复杂性、多样性和生动性,在联系和发展中把握事物。发散性思维仿佛具有众多条的“触角”,不拘泥于一个方向、一个框架而向四面八方延伸,可使学生的思维纵横交错,构成丰富多彩的、生动的“意识之网,而这张网可以迅速、灵活地“编”出多种多样的”意识产品。

猜你喜欢

外角内角思维能力
多边形内角和再探
三角与数列试题精选
变化的外角,不变的外角和
培养思维能力
添加辅助线 巧用外角性质
培养思维能力
三角形分割问题
探究多边形的外角和
多边形内外角问题的巧解
聚焦外角和整体来思考