数学百科:揭开星期几的奥秘
2015-03-31张远南
张远南
在我们这个古老的国度,人们什么时候开始把年份和动物的名称挂上钩,现在已经很难弄清楚了. 但是,由天干和地支相配而成的干支纪年法和干支纪日法却见诸史书,源远流长.
所谓天干,是一种用文字表示顺序的符号,共10个,依次是:甲、乙、丙、丁、戊、己、庚、辛、壬、癸. 这10个符号中的头几个,读者应该是很熟悉的.
所谓地支,是一种用文字表示时间的符号,共12个,依次是:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥. 以上12个字,每个字代表一个时辰,每个时辰代表两个小时. 从午夜起算,12个时辰恰为一天. 地支的12个符号,很难找到什么规律. 为了便于记忆,大约从东汉开始,人们使用12种熟悉的动物与之相配,称为属相(如图1).
久而久之,这种属相便成为以12为周期的纪年代号. 如:2000年为龙年,2005年为鸡年,下一个鸡年则为2017年.
由于10与12的最小公倍数是60,所以天干、地支循环相配,可得60种不同的组合,如甲子、乙丑、丙寅等等. 这60种组合,俗称“六十花甲子”,相配完毕,周而复始.
上述60一轮转的方法用于纪年,始于西周共和元年,约公元前841年,而用于纪日,则可追溯到更加久远的年代. 早在公元前一千多年,我国就已经采用“旬日制”,以10天为一旬,3旬为一月,恰好是半个花甲子!有趣的是,远在千里之外的古埃及,那时候采用的竟然也是“旬日制”. 人世间的这种巧合,不难使人猜测到,这是由于人类的双手长有10根手指的缘故.
西方国家采用星期纪日,那是稍后的事. 321年3月7日,古罗马皇帝——君士坦丁,正式宣布采用“星期制”,规定每一星期为7天,第一天为星期日,而后是星期一、星期二直至星期六,然后再回到星期日,如此永远循环下去. 君士坦丁大帝还规定,宣布的那天为星期一.
一个星期为什么定为7天?这大约是出自月相变化的缘故. 天空中再没有别的天象能变化得如此明显了,每隔7天便一改旧貌. 另外,“7”这个数恰与古代人已经知道的日、月、金、木、水、火、土7颗星的数目巧合,因此,在古代神话中就用一颗星作为一日的保护神,“星期”的名称也因之而起.
历史上的某一天究竟是星期几?这可是一个有趣的问题,我想读者一定很想知道它的奥秘. 不过,要了解这一点,还得先从闰年的设置讲起. 因为倘若没有闰年,这个问题就变得非常简单.
我们知道,由于一个回归年不是恰好365日,而是365日5小时48分46秒,即365.242 2日,为了防止这多出的0.242 2日积累起来造成新年逐渐往后推移,我们每隔4年时间便设置一个闰年,这一年的二月从普通的28天改为29天. 这样,闰年便有366天. 不过,这样补也不是刚刚好,每百年差不多又多补了一天. 因此又规定,遇到年数为“百年”的不设闰,扣它回来!这就是常说的“百年24闰”. 但是,百年扣一天闰还是不刚好,又需要每400年再补回来一天,因此又规定,公元年数为400倍数的再闰. 就这样补来又扣去,终于补得差不多刚好了. 例如,1988、2004这些能被4整除的年份为闰年,而1900、2100这些年不设闰,如此等等.
闰年的设置,无疑增加了我们对星期几推算的难度. 为了揭示关于星期几的奥秘,我们还需要一个简单的数学工具——高斯函数.
计算表明,这一天为星期一.
下面,我们讲述的是一个具有讽刺意味的故事.
大千世界,无奇不有. 1654年,爱尔兰一个叫乌索尔的大主教,在酒足饭饱之后,脑海里突然闪过一个奇异的想法,企图通过经典来“考证”地球的创生!
果然,此后乌索尔一头栽进了希伯来文的经典书堆,做起了一个只有他一个人知道的文字游戏. 在经过若干冥冥之夜后,不知从哪里跑来的灵感,他居然得出以下惊人的结论:地球是在公元前4004年10月26日(星期日)上午9时被上帝创造出来的!
乌索尔的论点,举世震惊. 由于它迎合了当时教会里一些人的口味,居然鼓噪一时. 不过,严肃、理智的科学家并没有被乌索尔的胡言乱语所吓倒,他们用铁的事实证实了:我们这个星球早已存在了几十亿年!
有一点与本节有关的是:乌索尔大主教在神学方面略有所通,算数水平却非常拙劣. 公元前4004年10月26日那天,并不是乌索尔所说的“星期日”. 读者完全可以用自己的计算去戳穿乌索尔大主教的骗人把戏. 需要注意的是:公元前4004年恰为闰年,这一年的二月份有29天.endprint