APP下载

吉林延边闹枝金矿区粗面安山岩锆石U-Pb年代学、地球化学特征及其构造意义

2015-03-07刘金龙孙丰月林博磊许庆林

关键词:安山岩延边锆石

刘金龙,孙丰月,林博磊,王 冠,许庆林,奥 琮

吉林大学地球科学学院,长春 130061



吉林延边闹枝金矿区粗面安山岩锆石U-Pb年代学、地球化学特征及其构造意义

刘金龙,孙丰月,林博磊,王 冠,许庆林,奥 琮

吉林大学地球科学学院,长春 130061

对延边闹枝金矿区金沟岭组粗面安山岩进行了锆石LA-ICP-MS U-Pb年代学和地球化学特征的研究,结果表明:金沟岭组粗面安山岩中的锆石自形程度较好,主要为长柱状,具有较为清晰的韵律环带结构,Th/U值为0.43~0.71(>0.40),表明锆石岩浆成因;锆石定年结果显示,金沟岭组粗面安山岩形成时代为早白垩世((130±2)Ma,MSWD=1.8);岩石属于钙碱性系列,明显富集大离子亲石元素(如K、Ba、Rb)、LREE和强不相容元素(如Th、U),相对亏损高场强元素(如Ta、Nb、Ti、P),高Mg#值(43~52,平均为47),Na2O/K2O值为1.73~2.25,平均值为1.93(>1.17),其地球化学特征与活动大陆边缘背景下形成的火成岩相似。结合岩石Nb/Ta值(14.40~14.72)、Rb/Sr值(0.10~0.18)、Th/Nb值(0.29~1.04)、Ba/La值(17.61~23.92)等特征值,认为岩浆由壳幔混合而成。综合前人研究成果,认为金沟岭组粗面安山岩形成于古太平洋(伊泽奈崎)板块斜向俯冲亚洲大陆的活动陆缘环境。

锆石U-Pb年龄;地球化学;金沟岭组;粗面安山岩;活动大陆边缘;闹枝金矿

0 引言

延边地区位于兴蒙造山带东段,隶属于中亚造山带,处于古亚洲构造域和环太平洋构造域的交汇处[1]。研究区前中生代时期主要受西伯利亚板块与华北板块相互作用的影响,经历了古亚洲洋消减、两大板块陆缘相向增生而后最终拼接的演化历史;中生代受到古太平洋板块活动的强烈改造与叠加增生,构成环太平洋构造带的重要组成部分,是一个大陆边缘复合构造区[2-3]。中国东北部地区发育了规模宏大的由中生代火山岩构成的火山带,是东亚大陆边缘巨型火山岩带的重要组成部分[4]。延边地区火山活动强烈,与火山-岩浆活动有成因关系的金、银、铜等多金属矿床、矿化点有40余处,即著名的五凤--小西南岔火山-岩浆期后低温热液型金多金属成矿带[5]。由此可见,该区中生代不同期次火山岩带构造环境及动力学背景的研究显得尤为重要。目前对于延边闹枝金矿区金沟岭组火山岩年代仍存在争议:在《吉林省区域地质志》中将其划入晚侏罗世[6];而吉林区测所通过K-Ar法测得安山岩年龄为134 Ma[7]。因此,笔者对延边闹枝金矿区金沟岭组粗面安山岩进行了年代学及岩石地球化学的研究,旨在揭示其形成时代及构造背景。

1 地质背景及样品描述

1.1 地质背景

研究区(图1)出露地层主要为中侏罗--早白垩世火山岩。其中中侏罗世屯田营组火山岩仅零星分布于研究区东部,早白垩世金沟岭组火山岩呈南北向狭长条带状分布于研究区东北部[10]。区内岩浆岩分布广泛,依时代主要可以划分为3期:海西期花岗闪长岩、印支早期二长花岗和燕山期花岗岩类[11]。海西期花岗闪长岩主要以大岩基形式产出,出露面积约占全区面积的1/2,其成岩时代为310 Ma。印支早期二长花岗岩主要分布于研究区东南部,呈小岩株形式产出,其形成时代为216 Ma 。燕山期花岗岩类主要岩石类型包括石英闪长岩、斜长花岗斑岩等,它们主要呈小岩株、岩枝等形式零散分布于研究区范围[11]。除上述主要岩浆岩类型外,研究区还发育较多的燕山晚期闪长玢岩,其主要呈脉岩形式分布于花岗闪长岩大岩基内。

区内构造以断裂为主,依走向主要分为北西--北北西、南北、东西及北东--北东东向等4组,它们控制了区内岩体、脉岩的空间产出与分布[11]。

1.第四系;2.金沟岭组火山岩;3.屯田营组火山岩;4.燕山期花岗闪长斑岩;5.燕山期石英闪长岩;6.燕山期斜长花岗斑岩;7.燕山晚期闪长玢岩;8.印支早期二长花岗岩;9.海西早期花岗闪长岩;10.矿体;11.断裂。图1 延边闹枝金矿构造位置图(a)[8]及矿区地质图(b)[9]Fig.1 Geological sketch map of Naozhi gold deposit in Yanbian Region

1.2 样品描述

本次分析测试样品粗面安山岩均采自汪清县闹枝金矿区井下坑道以及钻井岩心内。岩石为斑状结构,块状构造。斑晶主要为斜长石(20%),粒度为0.3~0.5 mm;另外含有少量的黑云母(5%)及角闪石(<5%),黑云母和角闪石偶尔可见绿泥石化、绿帘石化,角闪石可见菱形晶。基质具有玻基交织结构,主要由斜长石、碱性长石和火山玻璃组成(图2a、b)。

a.粗面安山岩(+); b.粗面安山岩(-)。Hb.角闪石; Pl.斜长石。图2 研究区粗面安山岩镜下照片Fig.2 Microphotographs of trachyandensite rocks

2 分析方法

2.1 岩石地球化学测试

本次实验主量及微量元素的分析测试在澳实分析检测(广州)有限公司完成。主量元素由荷兰PANalytical生产的Axios仪器利用熔片X-射线荧光光谱法(XRF)测定,并采用等离子光谱和化学法测定进行相互检测。微量元素和稀土元素采用美国Perkin Elmer公司生产的Elan9000型电感耦合等离子质谱仪(ICP-MS)测定。主量元素分析精度和准确度优于5%,微量稀土元素分析精度和准确度优于10%。

2.2 锆石LA-ICP-MS年代学测试

锆石挑选在河北省廊坊区域地质调查研究所实验室利用标准重矿物分离技术分选完成。经过双目镜下仔细挑选,将不同特征的锆石粘在双面胶上,并用无色透明的环氧树脂固定;待其固化之后,将表面抛光至锆石中心。在测试前,通过反射光和CL图像仔细研究锆石的晶体形态与内部结构特征,以选择最佳测试点。锆石制靶、反射光、阴极发光以及锆石U-Pb年龄测定和痕量元素分析均在西北大学大陆动力学国家重点实验室进行。本次测试采用的激光剥蚀束斑直径为32 μm,激光剥蚀样品的深度为20~40 μm;实验中采用He作为剥蚀物质的载气。锆石年龄采用国际标准锆石91500作为外标,元素质量分数采用NIST SRM610作为外标,29Si作为内标元素(锆石中SiO2的质量分数为32.8%[12]),分析方法见文献[13];普通铅校正采用Anderson推荐的方法[14];样品的同位素比值及元素质量分数计算采用ICP-MS-DATECAL程序[15-16],年龄计算及谐和图的绘制采用Isoplot程序[17]。

3 分析结果

3.1 地球化学特征

3.1.1 主量元素

岩石分析结果及特征值见表1。粗面安山岩w(SiO2)为54.72%~59.87%,平均值为57.14%。w(Na2O)和w(K2O)分别为4.14%~4.78%、2.12%~2.63%,平均值分别为4.53%、2.36%;全碱质量分数ALK=6.53%~7.26%,平均值为6.89%;铝饱和指数A/CNK为0.89~1.04,平均值为0.94。

底图据文献[18]。图3 岩石硅-碱图解Fig.3 Sehematic alkali-silica diagram of the rocks

底图据文献[19]。图4 岩石的AFM图解Fig.4 AFM diagram of the rocks

所有岩石样品在硅-碱图解(图3)中大部分落入亚碱性范围,在AFM图解(图4)中全部为钙碱性系列。岩石具有较高的MgO、CaO质量分数,w(MgO)为2.18%~3.80%,平均为2.87%;w(CaO)为3.36%~5.35%,平均为4.67%。岩石高Mg#值(43~52,平均为47),Na2O/K2O的值为1.73~2.25,平均值为1.93(>1.17),认为岩石与产自岛弧环境的高镁安山岩类似[20]。

3.1.2 微量元素

球粒陨石数据据文献[21],原始地幔数据据文献[22]。图5 岩石稀土元素球粒陨石标准化配分图解(a)和微量元素原始地幔标准化蛛网图(b) Fig.5 Chondrte-normalized REE patterns of the rocks(a)and Primitive mantle-normalized trace element spider diagams of the rocks(b)

岩石稀土总量w(ΣREE)为(109.50~185.54)×10-6,平均为146.60×10-6,(La/Yb)N为9.09~15.54,LREE/HREE=8.75~13.16,δEu为0.87~0.99。岩石配分曲线为明显右倾,稀土配分模式高度分异,LREE强烈富集和HREE极度亏损,轻重稀土元素分馏明显(图5a)。总体而言,岩石具有弱负铕异常,暗示了岩浆演化早期有少量斜长石分离结晶或岩浆源区有少量斜长石残留。高SiO2与低SiO2样品Eu异常相似,表明地壳混染过程不是控制岩浆REE演化的主要途径。

岩石原始地幔标准化痕量元素蛛网图(图5b)显示,其痕量元素的配分模式近似一致,相对于原始地幔,微量元素也表现出了富集大离子亲石元素(如K、Ba、Rb)和活泼不相容元素(如Th、U),相对亏损高场强元素(如Nb、Ta、P、Ti),Ta、Nb和Ti具有“TNT”负异常。Ti和P的亏损可能受到磷灰石和钛铁矿分离结晶的影响,或者岩浆有来源于古老的弧源地壳的成分[23]。

3.2 锆石LA-ICP-MS年代学

粗面安山岩锆石主要为长柱状,自形程度较好,少数为粒状及不规则状,部分呈断头晶。多数锆石具有较为清晰的韵律环带结构,具有岩浆锆石的特征(图6)。10个分析点测试结果较为集中(表2):w(U)为(50~1 590)×10-6,w(Th)为(30~1 007)×10-6。Th/ U值为0.43~0.71,平均值为0.55,符合岩浆锆石Th/ U值>0.40的特征[24]。计算得出206Pb/238U数据的加权平均年龄为(130±2)Ma,MSWD=1.8(图7),说明粗面安山岩形成时代为早白垩世。除此之外,还有8个数据点比较分散没参与计算,年龄为156~1 341 Ma,推测为捕获或者继承锆石,证明在其成岩过程中,可能还存在地壳物质的混染。

4 讨论

4.1 岩浆源区和岩石成因

本次测试所有粗面安山岩样品的主量元素CaO、MgO、Fe2O3、TiO2、K2O和SiO2质量分数呈负相关,而Na2O与SiO2质量分数呈正相关,具有同源岩浆演化趋势一致的特征。岩石Mg#值为43~52,平均为47,表明它们由基性下地壳铁镁质岩石部分熔融的可能性很小,因为与下地壳部分熔融有关的岩浆产物的Mg#一般小于40[25]。岩石w(Cr)为(10~30)×10-6,平均为15×10-6,小于原始地幔w(Cr)(2 121×10-6)[26]和高镁安山岩w(Cr)(一般大于100×10-6,高者可达770×10-6)[27]。因此,排除交代富集地幔部分熔融和来自消减带板片部分熔融的熔体与地幔发生混合的可能[28]。

岩石显示Ta、Nb和Ti具有“TNT”负异常,认为含有俯冲带幔源岩石的成分[22]。结合岩石Nb/Ta值(14.40~14.72)介于地壳平均值8.3[29]和地幔平均值17.5[21]之间、Rb/Sr值(0.10~0.18)介于地幔值0.034和地壳值0.350[30]之间、Ba/La值(17.61~23.92)介于地壳平均值9.6和原始地幔平均值25之间[24],认为岩浆由壳幔混合而成。

图6 研究区粗面安山岩部分典型锆石阴极发光图像Fig.6 CL images of zircons from the trachyandensite rocks

测点序号wB/10-6ThUTh/U同位素比值207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ年龄/Ma207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σNZ⁃N1⁃0188615900.560.050710.006980.135180.018180.019320.00059228243129161234NZ⁃N1⁃02781580.500.051960.003570.142880.009570.019940.0002828412813691272NZ⁃N1⁃032453900.630.050390.003630.137910.009650.019860.0003321312913191272NZ⁃N1⁃0488613880.640.050940.004420.140790.011890.020040.00040238155134111283NZ⁃N1⁃052896720.430.051540.002470.144180.006640.020290.000232658513761291NZ⁃N1⁃062766090.450.050550.004490.141790.012270.020330.00040220159135111303NZ⁃N1⁃0730500.590.052410.006580.147150.018020.020370.00059303222139161304NZ⁃N1⁃082143540.610.047900.001560.135890.004180.020580.00016945712941311NZ⁃N1⁃093017010.430.050840.009640.145070.027160.020680.00066234322138241324NZ⁃N1⁃10100714240.710.048130.003150.140140.008910.021110.0003110611413381352

图7 研究区粗面安山岩U-Pb年龄谐和图(a)和加权平均年龄图(b)Fig.7 Zircon U-Pb concordia diagram (a) and weighted average ages diagram (b) from the trachyandensite rocks

岩石明显富集大离子亲石元素(K、Ba、Rb)、LREE和活泼的不相容元素(Th、U),相对亏损高场强元素(如Nb、Ta、P、Ti),结合岩石钙碱性和高Mg#值(39~52,平均为47)等特征,认为本套岩石与岛弧或活动大陆边缘弧岩浆类似[31-32]。

4.2 构造背景

底图据文献[33]。图8 岩石MgO-TFeO-Al2O3判别图解Fig.8 MgO-TFeO-Al2O3 diagram

底图据文献[34]。图9 岩石Th-Hf/3-Ta判别图解Fig.9 Th-Hf/3-Ta diagram

在MgO-TFeO-Al2O3图解(图8)中,研究区岩石主体落入岛弧及活动大陆边缘附近。由于高场强元素的活动性较低,受各种地质作用的影响比较弱,因此能够真实反映源区的性质。在Th-Hf/3-Ta判别图解(图9)上,岩石大部分落在火山弧区域。粗面安山岩Hf/Th值为0.46~0.77(<3),认为是钙碱性[35]。微量元素中,Zr/Y值为8.67~11.00,所有数据的值都符合大陆边缘安山岩Zr/Y值为4~12的化学特征[36]。岩石La/Nb值为1.56~3.57(平均2.78),总体符合活动大陆边缘La/Nb值高于2的特征[37]。

在晚三叠世末,中国东北部由古亚洲洋板块俯冲体制转换为环太平洋俯冲体制[38]。有关古太平洋构造体系俯冲于欧亚大陆之下开始时间一直存在争论,目前主要有两种观点,一种认为是晚三叠世[39],而另一种认为是早、中侏罗世[40-41];但就古太平洋最终在早、中侏罗世俯冲的认识是一致的。海底磁异常条带研究显示,在150~90 Ma期间,古太平洋(伊泽奈崎)板块开始以20.7~30.0 cm/a的高速率向欧亚大陆作斜向俯冲[42],造成东北地区发育与美国西部盆岭省新生代钙碱性火山岩具有相似性的晚中生代火山岩,这些火山岩被认为是在岩石圈伸展和减薄过程中富集的岩石圈地幔减压部分熔融形成的[43]。早白垩世,东北地区南缘的延边地区也应处于类似活动大陆边缘的伸展环境[44-45],古太平洋板块的斜向俯冲对延边及其周缘地区最主要的影响可能是导致北东向的拖曳和深大断裂带的走滑和拉分作用,并导致造山带的走滑式垮塌和伸展,从而导致软流圈上涌和地幔减压熔融作用发生玄武质岩浆底侵作用[46-51];底侵的玄武质岩浆带来的大量热能导致先存基性地壳熔融并发生混合,从而形成该区早白垩世晚期的中性岩。

5 结论

1)延边闹枝地区粗面安山岩锆石LA-ICP-MS U-Pb定年结果显示,延边闹枝地区粗面安山岩的形成时代为(130±2)Ma(MSWD=1.8),即早白垩世。

2)地球化学特征显示,延边闹枝地区粗面安山岩明显富集大离子亲石元素(如K、Ba、Rb)、LREE和活泼的不相容元素(如Th、U),相对亏损高场强元素(如Ta、Nb、Ti、P),高Mg#值(39~52,平均为47),具有活动大陆边缘特征。Rb/Sr、Nb/Ta、Th/Nb、Ba/La等特征显示岩浆具有壳幔混合特点。

3)延边闹枝地区粗面安山岩形成于古太平洋(伊泽奈崎)板块斜向俯冲的活动陆缘环境。

[1] 张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D].长春:吉林大学,2002:1-132. Zhang Yanbin.The Isotopic Geochronoligic Frame of Granitic Magmatism in Yanbian Area[D].Changchun:Jilin University,2002:1-132.

[2] 彭玉鲸,纪春华,辛玉莲.中俄朝毗邻地区古吉黑造山带岩石及年代记录[J].地质与资源,2002,11(2):65-75. Peng Yujing,Ji Chunhua,Xin Yulian.Petrology and Geochronlolgy of the Paleo-Jilin-Heilongjiang Orogenic Belt in the Adjecent Areas of China,Russia and Korea[J].Geology and Resources,2002,11(2):65-75.

[3] 张兴洲,杨宝俊,吴福元,等.中国兴蒙--吉黑地区岩石圈结构基本特征[J].中国地质,2006,33(4):816-823. Zhang Xingzhou,Yang Baojun,Wu Fuyuan,et al. The Lithosphere Structure in the Hingmong-Jihei (Hing’gan-Mongolia-Jilin-Heilongjiang) Region,Northeastern China[J].Geology in China,2006,33(4):816-823.

[4] 林强,葛文春,孙德有,等.中国东北地区中生代火山岩的大地构造意义[J].地质科学,1998,3(2):129-138. Lin Qiang,Ge Wenchun,Sun Deyou,et al.Tectonic Significance of Mesozoic Volcanic Rocks in Northeastern China[J].Scientia Geologica Sinica,1998,33(2):129-138.

[5] 刘斌,马启波,刘培喜.延边地区东部火山-岩浆活动特点及矿化特征[J].地质论评,1999,45(增刊1):339-342. Liu Bin,Ma Qibo,Liu Peixi. The Volcano-Magmatic Activity Characteristics and Mineralization in Eastern Yanbian[J].Geological Review,1999,45(Sup.1):339-342.

[6] 吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1988:1-698. Bureau of Geology and Mineral Resources of Jilin Province.Regional Geology of Jilin Province[M].Beijing: Geological Publishing House,1988:1-698.

[7] 芮宗瑶,张洪涛,王龙生,等.吉林延边地区斑岩型-浅成热液型金铜矿床[J].矿床地质,1995,14(2):99-113. Rui Zongyao,Zhang Hongtao,Wang Longsheng,et al.Porphyry-Epithermal Gold,Copper Deposits in Yanbian Area,Jilin Province[J].Mineral Deposits,1995,14(2):99-113.

[8] Zhang Y B,Wu F Y,Wilde S A,et al.Zircon U-Pb Ages and Tectonic Implications of ‘Early Paleozoic’ Granitoids at Yanbian,Jilin Province,Northeast China[J].The Island Arc,2004,13:484-505.

[9] 孟庆丽,周永昶,柴社力.中国延边东部斑岩-热液脉型铜金矿床[M].长春:吉林科学技术出版社,2001:1-163. Meng Qingli, Zhou Yongchang,Chai Sheli. Porphy-Hydrithermal Copper-Gold Deposits in East Yanbian, China[M]. Changchun:Jilin Science and Technology Press,2001:1-163.

[10] 杨帅师,卿敏,郝通顺,等.吉林延边闹枝金矿床地质特征及矿床成因[J].世界地质, 2010,29(4):607-613. Yang Shuaishi,Qing Min,Hao Tongshun,et al.Geological Characteristics and Genesis of Naozhi Gold Deposit in Yanbian Area,Jilin Province[J].Global Geology,2010,29(4):607-613.

[11] 潘丽敏,邹祖荣.延边闹枝破碎蚀变岩型金矿床研究[J].长春地质学院学报, 1992,22(2) : 173-179. Pan Limin,Zou Zurong.Genesies of Naozhi Alterred Brecciation Rock Type Gold Deposit[J].Journal of Changchun College of Geology,1992,22(2):173-179.

[12] 袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520. Yuan Honglin,Wu Fuyuan,Gao Shan,et al.Zircon Laser Probe U-Pb Ages Dating and REE Component Analysis of Cenozoic Intrusions in NE China[J]. Chinese Science Bulletin,2003,48(14):1511-1520.

[13] Yuan H,Gao S,Liu X,et al.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3):353-370.

[14] Anderson T.Correction of Common Lead in U-Pb Analyses that do not Report204Pb[J].Chemical Geology, 2002,192(1/2):59-79.

[15] Liu Y,Hu Z C,Gao S, et al.Insitu Analysis of Major and Trace Elements Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J].Chemical Geology, 2008,257(1/2):34-43.

[16] Liu Y,Gao S,Hu Z C,et al.Continental and Oceanic Crust Recycling-Induced Melt-Periotite Interactions in the Trans-North China Orogen:U-Pb Dating,Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J].Journal of Petrology, 2010,51(1/2):537-571.

[17] Ludwig K R.User’s Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Execl[J].Berkeley Geochronology Center Special Publication,2003,4:1-70.

[18] Irvine T H,Baragar W R.A Guide to the Chemical Classification of the Common Volcanic Rocks[J].Canadian Journal of Earth Sciences,1971,8:523-548.

[19] MacDonald G A,Katsura T.Chemical Composition of Hawaiian Lavas[J].Journal of Petrology,1964,5:83-133.

[20] Tatsumi Y. Melting Experiments on a High-Magnesian Andesite[J]. Earth and Planetary Science Letters,1981,54(2):357-365.

[21] Boynton W V. Geochemistry of the Rare Earth Elements:Meteorite Studies[C]//Henderson P. Rare Earth Element Geochemistry.Amsterdam:Elservier, 1984:63-114.

[22] Sun S S,McDonough W F.Chemical and Isotopic Systematics of Oceanic Basalts: Implication for Mantle Composition and Processes[C]//Saunder A D,Norry M J. Magmatism in the Ocean Basins.[S.l.]:Geological Society Special Publication, 1989:313-345.

[23] 翟明国,樊祺诚,张宏福,等.华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用[J].岩石学报,2005,21(6):1509-1526. Zhai Mingguo,Fan Qicheng,Zhang Hongfu,et al.Lower Crust Proesces During the Lithosphere Thinning in the Eastern China:Magma Underplating,Replacement and Delamination[J].Acta Petrologica Sinica, 2005, 21(6):1509-1526.

[24] Weaver B L.The Origin of Ocean Island Basalt End-Member Compositions:Trace Element and Isotopic Constraints[J].Earth Planet Sci Lett,1991,104:381-397.

[25] Atherton M P,Petford N.Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust[J]. Nature,1993,362:144-146.

[26] Hirose K,Kushiro I.Partial Melting of Dry Peridotites at High Pressure:Determination of Compositiona of Melts Segregated from Peridotite Using Aggregates of Diamonds[J].Earth Planet Sci Lett,1993,114:477-489.

[27] Kamei A,Owada M,Nagao T,et al.High-Mg Diorites Derived from Sanukitic HMA Magmas,Kyushu Island,Southwest Japan Arc:Evidence from Clinopyroxene and Whole Rock Compositions[J]. Lithos, 2004,75:359-371.

[28] 李承东,张福勤,苗来成,等.吉林色洛河晚二叠高镁安山岩SHRIMP锆石年代学及其地球化学特征[J].岩石学报,2007,23(4):767-776. Li Chengdong,Zhang Fuqin,Miao Laicheng,et al.Zircon SHRIMP Geochronology and Geochemistry of Late Permain High-Mg Andesites in Seluohe Area,Jilin Province,China[J].Acta Petrologica Sinica, 2007,23(4):767-776.

[29] Rudnick R L,Cao S.Composition of the Continental Crust[C]//Rudnick R L.The Crust.Oxford:Elsevier Pergamon,2003:1-64.

[30] Taylor S R,Mclennan S M. The Geochemical Evolution of the Continental Crust[J].Reviews of Geophysics, 1995,33(2):241-265.

[31] Gill J B.Early Geochemical Evolution of an Oceanic Island Arc and Back Arc:Fiji and the South Fiji Basin[J].The Journal of Geology,1987,95(5):589-615.

[32] Francalanci L,Taylor S R,McCulloch M T,et al. Geochemical and Isotopic Variations in the Calc-Alkaline Rocks of Aeolian Arc,Southern Tyrrhern Sea, Italy:Constraints on Magma Genesis[J].Contribu Mineral Petrol,1993,113(3):300-313.

[33] Pearce J A,Gale G H.Identification of Ore-Deposition Environment from Trace Element Geochemistry of Associated Igneous Host Rocks[J].Geol Soc Spec Publ, 1977,7:14-24.

[34] Wood D A.Avariably Veined Suboceanic Uppermantle-Genetic Significance for Mid-Ocean Ridge Basalts from Geochemical Evidence[J].Geology,1979,7:499-503.

[35] Wood D A.The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Procince[J].Earth Planet Sci Lett,1980,50:11-30.

[36] Condie K C.Geochemical Changes in Basalts and Andesites Across the Archean-Proterozoic Boundary: Identification and Significance[J].Lithos,1989,23(1):1-18.

[37] Salters V J M,Hart S R.The Mantle Sources of Ocean Ridges, Island Arcs: The Hf-Isotope Connection[J].Earth Planet Sci Lett,1991,104:364-380.

[38] 赵春荆,彭玉鲸,党增欣,等.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社,1996:124-139. Zhao Chunjing,Peng Yujing,Dang Zengxin,et al.Tectonic Framework and Crust Evolution of Eastern Jilin and Heilongjiang Provinces[M].Shenyang:Liaoning University Press,1996:124-139.

[39] 彭玉鲸,陈跃军.吉黑造山带与华北地台开原--山城镇段构造边界位置[J].世界地质,2007,26(1):1-6. Peng Yujing,Chen Yuejun.Location of Structural Boundary Between Ji-Hei Orogenic Zone and Kaiyuan-Shancheng Town Section of North China Platform[J].Global Geology,2007,26(1):1-6.

[40] Xu W L,Ji W Q,Pei F P,et al.Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces,NE China:Chronology,Geochemistry,and Tectonic Implications[J].Journal of Asian Earth Sciences,2009,34(3):392-402.

[41] Wu F Y,Sun D Y,Ge W C,et al.Geochronology of the Phanerozoic Granitoids in Northeastern China[J].Journal of Asian Earth Sciences,2011,41(1):1-30.

[42] Maruyama S.Pacific-Type Orogeny Revisited:Miyashiro-Tupe Orogeny Proposed[J].The Island Arc, 1997,6:91-120.

[43] Zhang L C,Zhou X H,Ying J F,et al.Geochemistry and Sr-Nd-Pb-Hf Isotopes of Early Cretaceous Basalts from the Great Xinggan Range,NE China:Implications for Their Origin and Mantle Source Characteristics[J].Chemical Geology,2008,256(1/2):12-23.

[44] 赵俊康.延边小西南岔金铜矿成矿地球化学动力学研究[D].长春:吉林大学,2007:1-66. Zhao Junkang. Studies of ore Forming Geochemistry, Dynamic Mechanism, Xiaoxinancha Gold-Copper Deposit, Yanbian[D]. Changchun: Jilin University, 2007:1-66.

[45] Yu Y,Xu W L,Pei F P,et al.Chronology and Geochemistry of Mesozoic Volcanic Rocks in the Linjiang Area,Jilin Province and Their Tectonic Implications[J].Acta Geologica Sinica,2009,83(2): 245-257.

[46] Fan W M,Guo F,Wang Y J,et al. Post-Orogenic Bimodal Volcan-Ism Along the Sulu Orogenic Belt in Eastern China[J].Phys Chem Earth, 2001,26: 733-746.

[47] Fan W M, Guo F,Wang Y J,et al. Calc-Alkaline Volcanism of Post-Orogenic Extension in the Nor-thern Da Hinggan Mountains,Northeastern China[J].J Volcano Geotherm Res,2003,121: 115-135.

[48] Guo F, Fan W M, Wang Y J,et al.Geochemistry of Late Mesozoic Mafic Rocks in West Shandong Province: Characterizing the Lost Lithospheric Mantle Beneath North China Block[J].Geochem J, 2003,37: 63-77.

[49] Xu J,Ma G,Zhu G,et al.Formation and Evolution of the Tancheng-Lujiang Wrench Fault System: A Major Shear System to the Northwest of the Pacific Ocean[J].Tectonophysics, 1987,134: 273-310.

[50] 张允平.东北亚地区晚侏罗--白垩纪构造格架主体特点[J].吉林大学学报:地球科学版,2011,41(5):1265-1284. Zhang Yunping. Main Characteristics of Late Jurassic-Cretaceous Tectonic Framework in Northeast Asia[J]. Journal of Jilin University:Earth Science Edition, 2011,41(5):1265-1284.

[51] 韩世炯,孙景贵,邢树文,等. 中国东北部陆缘内生金矿床成因类型、成矿时代及地球动力学背景[J]. 吉林大学学报:地球科学版,2013,43(3):716-733. Han Shijiong, Sun Jinggui, Xing Shuwen, et al. Genetic Types, Metallogenic Epoch and Geodynamic Setting of Endogenetic Gold Deposits in the Continental Margin, Northeast China[J]. Journal of Jilin University:Earth Science Edition, 2013,43(3):716-733.

Geochronology and Geochemistry of Trachyandesite of Naozhi Gold Deposit in Yanbian Region,Southern Jinlin Province and Its Geological Significance

Liu Jinlong,Sun Fengyue,Lin Bolei,Wang Guan,Xu Qinglin,Ao Cong

CollegeofEarthSciences,JilinUniversity,Changchun130061,China

LA-ICP-MS zircon U-Pb dating and geochemical data of the trachyandesite rocks from Jingouling Group in Yanbian region are obtained to figure out their formation time and the regional tectonic background. The zircons from the trachyandesite rocks are euhedral in shape with oscillatory ring displaying in CL images with high Th/U valwes 0.43-0.71(>0.40). This implies their magmatic origin.The dating results indicate that these rocks formed in Early Cretaceous(130±2 Ma,MSWD=1.8). The composition of these rocks fall into the calc-alkaline category with enrichment in LILE(such as K,Ba,Rb),LREE and more mobile incompatible elements, such as Th, U , relative depletion of HFSE(such as Ta,Nb,Ti,P). Combined with their high Mg#values (43-52) and Na2O/K2O=1.73-2.25(>1.17), it shows the characteristics of the rocks from an active continental margin magma. Based on its Nb/Ta (14.40-14.72), Rb/Sr (0.10-0.18), Th/Nb (0.29-1.04), and Ba/La (17.61-23.92),we conclude that the magma was a mixture of crust and mantle material. Together with the research of regional tectonics, the corresponding geodynamic mechanisms responsible for the formation of the rocks may be closely related to the subduction of Paleo-Pacific plate and Izanagi plate towards Eurasia continent.

zircon U-Pb chronology;geochemistry; Jingouling Group;trachyandesite rocks;active continental margin;Naozhi gold deposit

10.13278/j.cnki.jjuese.201505112.

2014-12-23

中国地质调查局地质调查项目(1212011085485)

刘金龙(1988--),男,博士研究生,主要从事矿床学研究,E-mail:liujinlong@yeah.com

孙丰月(1963--),男,教授,博士生导师,主要从事热液矿床成矿理论与预测、区域成矿作用研究,E-mail:sfy@jlu.edu.cn。

10.13278/j.cnki.jjuese.201505112

P588.144

A

刘金龙,孙丰月,林博磊,等.吉林延边闹枝金矿区粗面安山岩锆石U-Pb年代学、地球化学特征及其构造意义.吉林大学学报:地球科学版,2015,45(5):1394-1404.

Liu Jinlong,Sun Fengyue,Lin Bolei,et al. Geochronology and Geochemistry of Trachyandesite of Naozhi Gold Deposit in Yanbian Region,Southern Jinlin Province and Its Geological Significance.Journal of Jilin University:Earth Science Edition,2015,45(5):1394-1404.doi:10.13278/j.cnki.jjuese.201505112.

猜你喜欢

安山岩延边锆石
《延边大学学报》(社科版)2020年总目录
俄成功试射“锆石”高超音速巡航导弹
延边大学美术学院绘画作品
西藏拿若铜矿床安山岩元素地球化学特征研究∗
“图们江论坛2018”在延边大学举行
신라 -고려 시기 경물 묘사 관련한시의 어음문체론적 특성 소고
王官屯油田安山岩油藏滚动评价探索
激发极化法寻找固体矿产的应用
红锆石
二连油田安山岩裂缝性储层压裂技术研究