APP下载

基于非结构网格的电阻率三维带地形反演

2015-03-01吴小平刘洋王威

地球物理学报 2015年8期
关键词:电阻率反演网格

吴小平, 刘洋, 王威

1 中国科学技术大学地球和空间科学学院 地震与地球内部物理实验室, 合肥 230026 2 蒙城地球物理国家野外科学观测研究站, 蒙城 233500 3 中海石油(中国)有限公司深圳分公司研究院, 广州 510240



基于非结构网格的电阻率三维带地形反演

吴小平1,2, 刘洋1,2, 王威3

1 中国科学技术大学地球和空间科学学院 地震与地球内部物理实验室, 合肥 230026 2 蒙城地球物理国家野外科学观测研究站, 蒙城 233500 3 中海石油(中国)有限公司深圳分公司研究院, 广州 510240

地表起伏地形在野外矿产资源勘察中不可避免,其对直流电阻率法勘探影响巨大.近年来,电阻率三维正演取得诸多进展,特别是应用非结构网格我们能够进行任意复杂地形和几何模型的电阻率三维数值模拟,但面向实际应用的起伏地形下电阻率三维反演依然困难.本文基于非结构化四面体网格,并考虑到应用GPS/GNSS时,区域地球物理调查中可非规则布设测网的实际特点,实现了任意地形(平坦或起伏)条件下、任意布设的偶极-偶极视电阻率数据的不完全Gauss-Newton三维反演.合成数据的反演结果表明了方法的有效性,可应用于复杂野外环境下的三维电法勘探.

电阻率; 三维反演; 非结构网格; 地形

1 引言

直流电阻率法是电法勘探的最经典方法之一,在金属矿产、非金属矿产、煤田、油气及地下水等资源、能源勘探中获得广泛而有效的应用,并已拓展到水文、工程、环境、考古等与国民经济建设、人类社会生活密切相关的探测领域(傅良魁,1983;吴小平和汪彤彤,2002).电法勘探具灵活性及勘探费用低的显著特点,演变出诸如单极、偶极及多极装置的电剖面法、电测深方法等多种观测方式.特别是20世纪末发明的高密度电法仪器,可以高效地获得大量地电观测数据,使得地下精细结构的电阻率三维反演成像成为可能,并迅速成为该领域国内外学者关注的前沿课题(Park and Van Gregory,1991;Li and Oldenburg,1994;Dabas et al.,1994;Sasaki,1994;Zhang et al.,1995;Loke and Barker,1996;何继善,1997;底青云等,1997;吴小平和汪彤彤,2002;黄俊革等,2004).

随着计算机及数值计算技术的发展,电阻率三维正、反演取得很大进展,预条件共轭梯度、多重网格等算法的引入大大提高了电阻率三维有限差分法、有限单元法数值模拟的计算速度和精度(Spitzer,1995;Zhou and Greenhalgh,2001;Li and Spitzer,2002;Wu,2003;Wu et al.,2003;Lu et al.,2010;Ren and Tang,2010;Pan and Tang,2014;Ren and Tang,2014),为电阻率三维快速反演奠定基础.在电阻率三维反演中,由于反演参数多和数据量大,雅可比矩阵(偏导数矩阵)巨大的计算量和存储需求难于克服.许多学者研究可避开计算雅可比矩阵的反演算法,如基于Born近似的三维反演方法(Li and Oldenburg,1994),避开了雅可比矩阵计算,简单快速地得到地下介质导电率的三维分布.Born近似在地下介质导电率变化不大时比较精确,地下介质越复杂,则精确程度越低,反演分辨率受到很大限制.Zhang等(1995)、吴小平和徐果明(2000)引入共轭梯度方法,解决了电阻率三维有限差分正演效率及三维反演中雅可比矩阵求取、存储两方面问题,实现了比较快速、有效的电阻率真三维反演.宛新林等(2005)通过对光滑度矩阵元素进行适当改进,使之适用于各种情况下光滑度矩阵的求取,并用最小二乘正交分解法求解反演方程,有效地提高了计算速度.李长伟等(2012)基于改进Krylov子空间算法实现了井中激电快速反演;戴前伟等(2012)、刘斌等(2012a)研究了不同约束条件下的电阻率三维反演.Pidlisecky等(2007)采用预条件双共轭梯度法求解正演中的大型线性方程组,开发了电阻率三维不完全Gauss-Newton反演程序.电阻率三维反演也逐渐在水文、工程地球物理(Park,1998;Chambers et al.,2011;刘斌等,2012b)、环境地质(Weller et al.,1999;Chambers et al.,2002;Bentley and Gharibi,2004;)、考古(Papadopoulos et al.,2006,2007)以及永久冻土探测(Rödder and Kneisel,2012;Kneisel et al.,2014)等领域获得应用.

以上所述电阻率三维反演及其应用均是基于平坦地形.而实际勘探中,地形影响不可避免,并对电阻率反演结果可能造成难于预料的偏差.Oppliger(1984)、Holcombe和Jiracek(1984)分别利用积分方程、有限元法进行了电阻率三维地形改正,Tsourlos等(1999)研究了二维情况下各种电极排列的地形影响及其改正.他们的结果表明:做地形改正只能是非常近似的,地下结构稍复杂,这种改正误差就很大.只有将地形同时带入反演算法中,才能精确消除地形影响及其对反演结果的偏差.Yi等(2001)、吴小平(2005)分别利用有限元和有限差分数值模拟实现了带地形电阻率三维反演,由于采用结构化的网格单元剖分,不能适应于复杂地形下的电阻率三维反演.近年来,非结构有限元方法在复杂地形电阻率三维数值模拟中取得极大成功(Rücker et al.,2006;Ren and Tang,2010,2014;Wang et al.,2013),非结构化网格具有单元质量可控、允许局部加密、能够模拟复杂几何模型等优点,使得三维非结构有限单元求解效率大幅提高,同等计算精度情况下,非结构化网格相对于结构化规则网格,计算时间和存储量均可下降约一个数量级.在此基础上,Günther和Rücker(2006)实现了电阻率带地形三维反演,是该领域的一个重要进展.

电阻率三维观测方式也是值得研究的重要方面,它不仅关系到野外观测的效率和成本,也关系到数据的分辨力和反演效果(吴小平和汪彤彤,2002).传统的地面物探往往都需要先进行人工物探测量网布设,这是一项繁重的野外工作,其效率低、成本高.在山区、森林覆盖地区,通视条件差,国家控制点少且远离工区,使得用传统的经纬仪来测定电法观测点的坐标几乎不可能(林君和石磊,1996;陈清礼和胡家华,1998).GPS/GNSS(Global Navigation Satellite System)导航与定位技术快速发展(陈俊勇等,2007),中国的北斗卫星导航系统也日趋成熟(杨元喜,2010),手持型设备的定位精度也在不断提高(刘少杰等,2006;李国防和闫新亮,2010;王克晓等,2012),为电法勘探测网布设提供了一种全新的工作方法(刘会敏和赵灏,2013),在进行区域地球物理调查时,可形成适应于工区地形、环境条件的任意灵活三维测量电极布设方式,而不必严格按设定的规则测网顺序进行.然而,由于任意布极三维测量的观测数据结构复杂,其三维反演面临诸多挑战,Günther和Rücker(2006)的电阻率带地形三维反演没有这方面的解决方案,也未见有针对性的其他工作发表.

本文将任意布设电极的三维观测方式与电阻率三维非结构有限单元数值模拟相结合,实现任意地形(平坦或起伏)条件下、任意布设的偶极-偶极视电阻率观测数据的不完全Gauss-Newton三维反演.这是野外数据三维反演解释的关键,具有显著的实际意义.

2 电阻率三维非结构有限单元正演

双电极供电时的直流电阻率法控制方程可以表示为:

φ

其中,φ为电势,供电电流为I,正电极位置为rs+,负电极位置为rs-,σ为电导率.用有限元离散求解区域,可将此式写成矩阵表达形式(Wangetal.,2013):

A(σ)u=q,

(1)

u是表示三维网格节点上电势分布的向量,A表示为拉普拉斯正演算子,实际是一个与网格剖分及电导率分布有关的对称、稀疏矩阵,q是一个描述源分布的向量.

正演问题实际就是在已知区域中电导率和源分布的情况下,求解电势的分布:

u=A-1(σ)q.

(2)

我们实现了电阻率三维非结构有限单元数值模拟(Wangetal.,2013),本文利用三维非结构有限单元可对任意电阻率模型进行正演计算.图1a显示均匀半空间中有一半径为35m的低阻球体模型及其非结构网格剖分,图1b为供电极及测量电极分布的示意图.点A(30,500)为供电点,21个测量电极位于井中测线z=900~1000 m(x=-70 m)上,间隔10 m.背景电阻率为500 Ωm,球体电阻率为5 Ωm.该球体模型的电位分布有解析解(Large,1971;Zhdanovand Keller,1994),可用于检验电阻率三维正演数值解的可靠性.图2是三维非结构有限单元数值模拟结果与解析解的对比,平均误差为0.9%,表明我们的电阻率三维非结构有限单元数值模拟结果是可靠的,获得较高的计算精度.

图3是平坦地形下的高阻体模型示意图,地下高阻异常体电阻率2000 Ωm,异常尺寸20 m×20 m×20 m,顶部埋深10 m,背景电阻率200 Ωm,地表测区80 m×80 m,相邻电极间距离均为4 m,即有21×21个测量电极,供电极距AB=100 m.图4是非结构有限元三维正演计算获得的中间梯度视电阻率平面图,图中明显可见高阻异常响应.

图1 球体模型(a) 非结构网格剖分; (b) 供电极及测量电极分布示意图.Fig.1 Sphere model(a) Unstructured grids; (b) Schematic diagram of electrodes as source and receivers.

图2 球体模型的数值解与解析解对比Fig.2 Comparison between numerical and analytical solutions of the sphere model

实际测量中,地形影响不可避免.非结构有限元方法在三维地形的数值模拟中具有结构化网格无可比拟的优势.图5是一个用凸起半球模拟山峰地形下的高阻异常体及其非结构网格剖分,异常体参数与图3中的模型相同.图6为山峰地形下高阻体模型的中间梯度视电阻率平面图(AB=100 m),结果表明:地形影响非常大,反映的主体响应为低阻异常,基本掩盖了地下为高阻异常体的真实结构.

图3 高阻体模型示意图Fig.3 Schematic diagram of the high resistivity model

图4 高阻体模型的视电阻率平面图(AB=100 m)Fig.4 Apparent resistivity of the high resistivity model (AB=100 m)

3 电阻率三维不完全Gauss-Newton反演

直流电阻率不完全Gauss-Newton反演中,观测数据d一般是模型三维剖分网格节点上电位u的子集,即仅在若干个有限的位置上进行观测,有:

d=Qu=QA-1(σ)q,

(3)

其中,Q是u到d的映射矩阵.反演的目的就是从这些有限位置观测到的电位d得到地下的电导率σ(或电阻率)分布.通常情况下,为了防止反演不稳定而出现偏差比较大的电导率(如不符合物理意义的负值),一般取反演参数m为ln(σ).经典的最小二乘法反演是对以下泛函求极值:

Φd=‖D(d(m)-dobs)‖2,

(4)

一般采用加上模型约束的正则化方法,变成无约束的最优化问题,其目标泛函为:

(5)

其中,d(m)为计算数据,dobs为观测值,β为正则化参数,mref为参考模型.W为模型加权矩阵,一般取一阶正则化约束,用梯度算子保证模型的光滑度(TikhonovandArsenin,1977),扩展到三维:

图5 山峰地形下高阻体模型的非结构网格剖分图Fig.5 Unstructured grids of the high resistivity model under a hill

W= (αsI+αxGx+αyGy+αzGz)T

×(αsI+αxGx+αyGy+αzGz),

其中,Gx,Gy,Gz为三个方向的梯度算子;αx,αy,αz为三个方向的光滑度加权,αs为最小权重.一般来说W矩阵可根据先验信息进行调整,比如Pidlisecky等(2007)在W矩阵右端乘上随深度z递减的1/z2矩阵,以模拟地表测量随深度的衰减.本文不涉及对W矩阵的再调整,并取αx=αy=αz=1,αs=0.01.Gauss-Newton方法的法方程形式为:

(JTDTDJ+βWTW)Δm=

-[JTDTD(QA-1q-dobs)+βWTW(m-mref)],

(6)

H=JTDTDJ+βWTW,

g=JTDTD(QA-1q-dobs)+βWTW(m-mref),

(6)式可简写为:

HΔm=-g,

(7)

Haber等(2000)将J表示为:

J=-QA-1B,

(8)

其中,B=∂(A(m)u)/∂m,B是与模型参数和网格划分有关的一个矩阵.Dembo等(1982)指出,对方程组(7)只需要近似求解,借鉴不完全Gauss-Newton法,采用不精确的预条件共轭梯度算法(PCG)求解方程组(7),即设置较低的PCG迭代收敛准则和迭代次数限制,预条件矩阵为WTW(Haber,2005).PCG迭代过程中需要计算矩阵向量积Hv,只需要处理J与向量v的乘积Jv或JTv即可,可按如下步骤:

(1) 先计算一个中间向量w=Bv;

(2) 然后求解线性系统y=A-1w;

(3) 之后y向量左乘投影矩阵Q即可.

由于反演过程中需要反复求解三维正演的线性系统y=A-1w来完成雅可比矩阵与向量的乘积,因而求解Gauss-Newton反演的法方程非常耗时.同样基于不完全Gauss-Newton思想,在计算矩阵向量积Hv时,设置较低的正演计算精度.JTv的计算类似,详见相关文献(吴小平和徐果明,1999;李长伟等,2012),大大提高了电阻率三维不完全Gauss-Newton反演算法的效率.

引入上述方法之后,简要的不完全Gauss-Newton反演流程如下:

(1) 给定初始模型和参考模型,均取为均匀半空间.

(2) 利用PCG算法不精确求解方程(7),获得模型修正量Δm.

(3) 确定线性搜索步长α:

(4) 更新模型:

mi+1=mi+αΔm.

(5) 判断是否继续迭代:

计算目标函数并估计数据残差,若满足精度要求则反演结束并输出结果;若不满足,重复步骤(2)—(4)进行迭代.对于节点数为250000左右的非结构网格,约5次迭代可得到较好的结果,总迭代次数一般不超过10次.反演程序由IntelFortran编译运行,在PC上计算耗时30min左右(CPU为i5-3.2GHz,内存为8G).

图6 山峰地形下高阻体模型的视电阻率平面图(AB=100 m)Fig.6 Apparent resistivity of the high resistivity model under a hill (AB=100 m)

4 任意偶极-偶极数据的电阻率三维反演4.1 任意偶极-偶极观测方式

实际上,由于非结构网格单元的建模优势,可以针对不同地形特点,设计该地形条件下最合理的观测方式,即对任意形式的偶极-偶极测量数据,无论观测方式简单或复杂,均可用于本文任意地形条件下的三维电阻率反演.

4.2 平坦地形下高阻体模型的反演

模型设置如前文图3中模型,即平坦地形下有一立方体高阻异常,背景电阻率为200 Ωm,异常体电阻率为2000 Ωm.反演结果如图8所示,该结果表明地下存在高阻异常,与图3所示的模型示意图相当一致,定位准确,反演获得很好的效果.

4.3 平坦地形下多异常体的反演

为了验证反演算法的正确性与分辨率,反演更为复杂一些的模型很有必要.图9为平坦地形下并排两个立方体异常模型,其中一个为低阻体,电阻率20 Ωm;另一个为高阻体,电阻率2000 Ωm,顶部埋深均为10 m,异常间隔20 m,背景电阻率为200 Ωm.

反演结果如图10所示,清楚地反映了地下低阻与高阻异常体并存,横向分辨率很好,并且没有其他的多余结构会影响解释结果.与图9所示的真实模型示意图相比,定位准确,吻合好,反演结果很好地分辨了地下真实的电性结构.

4.4 山峰地形下高阻体模型的反演

模型设置如前文图5中模型,山峰地形下有一立方体高阻异常,背景电阻率为200 Ωm,异常体电阻率为2000 Ωm.倘若不考虑山峰地形的影响,直接使用平坦地形下的电阻率三维反演,则结果如图11所示,显示地下为一低阻异常体,与图5的真实模型完全不一致.可见,地形造成的影响非常大,甚至获得相反的异常结果.

吴小平(2005)的结果表明,无论是在数据空间还是在模型空间进行地形校正,起伏地形条件下的电阻率三维反演均不能完全消除地形影响,必须在反演中直接引入地形信息,进行带地形的电阻率三维反演才有可能.图12为该模型的带地形电阻率三维反演结果,清晰地反映了山峰地形下的高阻异常体,与图5的真实模型相当一致,有效地消除了地形影响.

4.5 复杂起伏地形条件下的电阻率三维反演

实际野外勘察工作中,山峰、山谷起伏不定,地形条件十分复杂.随着GPS/GNSS技术的日益成熟,复杂环境中观测点的准确定位变得简单易行,为灵活、高效的野外电阻率三维测量创造了有利条件.

图7 随机观测装置示意图Fig.7 Schematic of the random acquisition

图8 高阻体模型的反演结果Fig.8 Inversion of the high resistivity model

图9 低阻和高阻共存的组合模型示意图Fig.9 Schematic diagram of the model with low and high resistivity anomalous bodies

图10 低阻和高阻异常体的组合模型反演结果Fig.10 Inversion of the combination model with a low resistivity and a high resistivity anomalous bodies

图11 山峰地形下高阻体模型的反演结果,反演中没有考虑地形Fig.11 Inversion of the high resistivity model under a hill,ignoring the influence of the topography

结合本文实现的任意偶极-偶极视电阻率观测数据的带地形三维反演,将在野外实际数据的三维反演解释中发挥重要作用.

图13是模拟野外实际情况构建的一个相对复杂的起伏地形及其非结构网格剖分.我们分别反演该复杂地形下的低阻异常体和高阻异常体三维模型,低阻异常体电阻率为20 Ωm,高阻异常体电阻率为2000 Ωm,背景电阻率均为200 Ωm,其他模型参数见图3.当起伏地形下分别存在低阻异常体和高阻异常体时,带地形电阻率三维反演结果见图14、图15,均清晰地反映了地下的真实电阻率结构,获得很好的反演效果,表明本文基于非结构网格的电阻率三维反演方法在野外复杂地形条件下亦可获得可靠结果.

4.6 数据含10%高斯噪声的三维反演

模型设置与4.2节相同,即平坦地形下有一立方体高阻异常,背景电阻率为200 Ωm,异常体电阻率为2000 Ωm.在生成合成数据时,将默认引入的5%高斯噪声增加为10%高斯噪声.反演结果如图16所示,同样取得较好的反演结果,电阻率结构清晰并且无多余的虚假信息.与图8的反演结果相比,只是在高阻异常中心处的电阻率值略有减小,表明本文的电阻率三维反演结果可靠,反演方法对观测数据的噪声依赖性不大.

图12 山峰地形下高阻体模型的带地形反演结果Fig.12 Inversion of the high resistivity model under a hill,considering the influence of the topography

图14 复杂起伏地形下存在低阻异常体的带地形反演结果Fig.14 Inversion of the low resistivity model under a complex topography,considering the influence of the topography

图15 复杂起伏地形下存在高阻异常体的带地形反演结果Fig.15 Inversion of the high resistivity model under a complex topography,considering the influence of the topography

图16 引入10%测量误差时高阻体模型的反演结果Fig.16 Inversion of the high resistivity model with a measurement error of 10%

图13 复杂起伏地形的非结构网格剖分示意图Fig.13 Unstructured grids of a complex topography

5 结论

随着GPS/GNSS技术的日益成熟,野外区域地球物理调查中观测点的准确定位变得简单易行,为灵活、高效的野外电阻率三维测量创造了有利条件.结合电阻率三维非结构有限单元数值模拟,本文实现了任意偶极-偶极视电阻率观测数据的带地形三维反演,理论模型反演以及模拟野外实际地形的复杂模型反演均取得很好的效果,模拟实际数据带高斯噪声的三维反演也取得可靠的结果,将对野外实际数据的三维反演解释向前推进关键一步.

Armijo L. 1966. Minimization of functions having Lipschitz continuous first partial derivatives.Pac.J.Math., 16(1): 1-3. Bentley L R, Gharibi M. 2004. Two- and three-dimensional electrical resistivity imaging at aheterogeneous remediation site.Geophysics, 69(3): 674-680.

Chambers J E, Ogilvy R D, Kuras O, et al. 2002. 3D electrical imaging of known targets at a controlled environmental test site.Environ.Geol.,41(6): 690-704.

Chambers J E, Wilkinson P B, Kuras O, et al. 2011. Three-dimensional geophysical anatomy of an active landslide in Lias Groupmudrocks, Cleveland Basin, UK.Geomorphology, 125(4): 472-484.

Chen J Y, Dang Y M, Cheng P F. 2007. Development and progress in GNSS.JournalofGeodesyandGeodynamics(in Chinese), 27(5): 1-4.

Chen Q L, Hu J H. 1998. The use of portable GPS in electrical prospecting.GeophysicalProspectingforPetroleum(in Chinese), 37(4): 128-133. Dabas M, Tabbagh A, Tabbagh J. 1994. 3-D inversion in subsurface electrical surveying-I. Theory.Geophys.J.Int.,119(3): 975-990.

Dai Q W, Chai X C, Chen D P. 2012. 3D DC resistivity inversion based on damped Gauss-Newton method.ChineseJournalofEngineeringGeophysics(in Chinese), 9(4): 375-379.

Dembo R S, Eisenstat S C, Steihaug T. 1982. Inexact newton methods.SIAMJ.Numer.Anal., 19(2): 400-408.

Di Q Y, Wang M Y, Yan S M, et al. 1997. The application of the high density resistivity method for the seawave-proof dam in Zhuhai-harbour.ProgressinGeophysics(in Chinese), 12(2): 79-88.

Fu L K. 1983. Electrical Prospecting Tutorial (in Chinese). Beijing:Geological Publishing House. Günther T, Rücker C, Spitzer K. 2006. Three-dimensional modelling and inversion of DC resistivity data incorporating topography—II. Inversion.Geophys.J.Int.,166(2): 506-517. Haber E, Ascher U M, Oldenburg D. 2000. On optimization techniques for solving nonlinear inverse problems.InverseProblems, 16(5): 1263-1280. Haber E. 2005. Quasi-newton methods for large-scale electromagnetic inverse problems.InverseProblems, 21(1): 305-323.

He J S. 1997. Development and prospect of electrical prospecting method.ChineseJ.Geophys.(ActaGeophysicaSinica)(in Chinese), 40(S1): 308-316. Holcombe H T, Jiracek G R. 1984. Three-dimensional terrain corrections in resistivity surveys.Geophysics, 49(4): 439-452.

Huang J G, Ruan B Y, Bao G S. 2004. Resistivity inversion on 3-D section based on FEM.JournalofCentralSouthUniversity(ScienceandTechnology)(in Chinese), 35(2): 295-299.

Kneisel C, Emmert A, Kästl J. 2014. Application of 3D electrical resistivity imaging for mapping frozen ground conditions exemplified by three case studies.Geomorphology, 210: 71-82.

Large D B. 1971. Electric potential near a spherical body in a conducting half-space.Geophysics, 36(4): 763-767.

Li C W, Xiong B, Wang Y X, et al. 2012. Inversion of IP logging based on improved Krylov subspace methods.ChineseJ.Geophys. (in Chinese), 55(11): 3862-3869, doi: 10.6038/j.issn.0001-5733.2012.11.034.

Li G F, Yan X L. 2010. Positioning accuracy test of portable GPS receiver and its application in geological exploration of mineral.GeotechnicalEngineeringWorld(in Chinese), 1(4): 380-384.

Li Y G, Oldenburg D W. 1994. Inversion of 3-D DC resistivity data using an approximate inverse mapping.Geophys.J.Int.,116(3): 527-537.

Li Y G, Spitzer K. 2002. Three-dimensional DC resistivity forward modelling using finite elements in comparison with finite-difference solutions.Geophys.J.Int.,151(3): 924-934.

Lin J, Shi L. 1996. Prospect for application of GPS survey in geophysical exploring.EquipmentforEarthScience(in Chinese), 4: 1-5.Liu B, Li S C, Li S C, et al. 2012a. 3D electrical resistivity inversion with least-squares method based on inequality constraint and its computation efficiency optimization.ChineseJ.Geophys. (in Chinese), 55(1): 260-268, doi: 10.6038/j.issn.0001-5733.2012.01.025.

Liu B, Nie L C, Li S C, et al. 2012b. 3D electrical resistivity inversion tomography with spatial structural constraint.ChineseJournalofRockMechanicsandEngineering(in Chinese), 31(11): 2258-2268.

Liu H M, Zhao H. 2013. The use of portable GPS in electrical and magnetic prospecting for network layout.West-ChinaExplorationEngineering(in Chinese), 25(8): 86-88.Liu S J, Song Z C, Liu G. 2006. Error analysis of handheld GPS positioning in field geological survey.SurveyingandMappingofSichuan(in Chinese), 29(1): 11-14.

Loke M H, Barker R D. 1996. Practical techniques for 3D resistivity surveys and data inversion.GeophysicalProspecting, 44(3): 499-523.Lu J J, Wu X P, Spitzer K. 2010. Algebraic multigrid method for 3D DC resistivity modelling.ChineseJ.Geophys.,53(3): 700-707.

Oppliger G L. 1984. Three-dimensional terrain corrections for mise-à-la-masse and magnetometric resistivity surveys.Geophysics, 49(10): 1718-1729.

Pan K J, Tang J T. 2014. 2. 5-D and 3-D DC resistivity modelling using an extrapolation cascadic multigrid method.Geophys.J.Int., 197(3): 1459-1470.

Papadopoulos N G, Tsourlos P, Tsokas G N, et al. 2006. Two-dimensional and three-dimensional resistivity imaging in archaeological site investigation.Archaeol.Prospect.,13(3): 163-181.

Papadopoulos N G, Tsourlos P, Tsokas G N, et al. 2007. Efficient ERT measuring and inversion strategies for 3D imaging of buried antiquities.NearSurf.Geophys.,5(6): 349-361.

Park S K, Van Gregory P. 1991. Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes.Geophysics, 56(7): 951-960.

Park S. 1998. Fluid migration in the vadose zone from 3-D inversion of resistivity monitoring data.Geophysics, 63(1): 41-51.

Pidlisecky A, Haber E, Knight R. 2007. RESINVM3D: A 3D resistivity inversion package.Geophysics, 72(2): H1-H10.

Ren Z Y, Tang J T. 2010. 3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method.Geophysics, 75(1): H7-H17.

Ren Z Y, Tang J T. 2014. A goal-oriented adaptive finite-element approach for multi-electrode resistivity system.Geophys.J.Int.,199(1): 136-145.

Rödder T, Kneisel C. 2012. Permafrost mapping using quasi-3D resistivity imaging,Murtèl,Swiss Alps.NearSurfaceGeophysics, 10(2): 117-127.Rücker C, Günther T, Spitzer K. 2006. Three-dimensional modelling and inversion of dc resistivity data incorporating topography—I. Modelling.Geophys.J.Int.,166(2): 495-505.

Sasaki Y. 1994. 3-D resistivity inversion using the finite-element method.Geophysics, 59(12): 1839-1848. Spitzer K. 1995. A 3-D finite-difference algorithm for DC resistivity modelling using conjugate gradient methods.Geophys.J.Int.,123(3): 903-914.Tikhonov A N, Arsenin V A. 1977. Solutions of Ill-posed Problems. Washington:W. H. Winston and Sons.

Tsourlos P I, Szymanski J E, Tsokas G N. 1999. The effect of terrain topography on commonly used resistivity arrays.Geophysics, 64(5): 1357-1363.

Wan X L, Xi D Y, Gao E G, et al. 2005. 3-D resistivity inversion by the least-squares QR factorization method under improved smoothness constraint condition.ChineseJ.Geophys. (in Chinese), 48(2): 439-444, doi: 10.3321/j.issn:0001-5733.2005.02.030.

Wang K X, Li F Y, Liu H L, et al. 2012. Handheld GPS positioning accuracy and error.GNSSWorldofChina(in Chinese), 36(6): 83-86.

Wang W, Wu X P, Spitzer K. 2013. Three-dimensional DC anisotropic resistivity modelling using finite elements on unstructured grids.Geophys.J.Int.,193(2): 734-746. Weller A, Frangos W, Seichter M. 1999. Three-dimensional inversion of induced polarization data from simulated waste.J.Appl.Geophys., 41(1): 31-47.

Wu X P, Xu G M. 1999. Derivation and analysis of partial derivative matrix in resistivity 3-D inversion.OilGeophysicalProspecting(in Chinese), 34(4): 363-372.

Wu X P, Xu G M. 2000. Study on 3-D resistivity inversion using conjugate gradient method.ChineseJ.Geophys. (in Chinese), 43(3): 420-427, doi: 10.3321/j.issn:0001-5733.2000.03.016.

Wu X P, Wang T T. 2002. Progress of study on 3D resistivity inversion methods.ProgressinGeophysics(in Chinese), 17(1): 156-162, doi: 10.3969/j.issn.1004-2903.2002.01.023.

Wu X P. 2003. A 3-D finite-element algorithm for DC resistivity modelling using the shifted incomplete Cholesky conjugate gradient method.Geophys.J.Int.,154(3): 947-956.

Wu X P, Xiao Y F, Qi C, et al. 2003. Computations of secondary potential for 3D DC resistivity modelling using an incomplete Choleski conjugate-gradient method.GeophysicalProspecting, 51(6): 567-577.

Wu X P. 2005. 3-D resistivity inversion under the condition of uneven terrain.ChineseJ.Geophys. (in Chinese), 48(4): 932-936, doi: 10.3321/j.issn:0001-5733.2005.04.028.

Yang Y X. 2010. Progress, contribution and challenges of compass/Beidou satellite navigation system.ActaGeodaeticaetCartographicaSinica(in Chinese), 39(1): 1-6. Yi M J, Kim J H, Song Y, et al. 2001. Three-dimensional imaging of subsurface structures using resistivity data.GeophysicalProspecting, 49(4): 483-497.

Zhang J, Mackie R L, Madden T R. 1995. 3-Dresistivity forward modeling and inversion using conjugate gradients.Geophysics, 60(5): 1313-1325.

Zhdanov M S, Keller G V. 1994. The Geo-Electrical Methods in Geophysical Exploration (Vol. 31). Netherlands: Elsevier Science Limited. Zhou B, Greenhalgh S A. 2001. Finite element three-dimensional direct current resistivity modelling: accuracy and efficiency considerations.Geophys.J.Int.,145(3): 679-688.

附中文参考文献

陈俊勇, 党亚明, 程鹏飞. 2007. 全球导航卫星系统的进展. 大地测量与地球动力学, 27(5): 1-4.

陈清礼, 胡家华. 1998. 手持式GPS在电法勘探中的应用. 石油物探, 37(4): 128-133.

戴前伟, 柴新朝, 陈德鹏. 2012. 基于阻尼型高斯牛顿法的三维直流电阻率反演. 工程地球物理学报, 9(4): 375-379.

底青云, 王妙月, 严寿民等. 1997. 高密度电阻率法在珠海某防波堤工程中的应用. 地球物理学进展, 12(2): 79-88.

傅良魁. 1983. 电法勘探教程. 北京: 地质出版社.

何继善. 1997. 电法勘探的发展和展望. 地球物理学报, 40(增刊): 308-316.

黄俊革, 阮百尧, 鲍光淑. 2004. 基于有限单元法的三维地电断面电阻率反演. 中南大学学报(自然科学版), 35(2): 295-299.

李长伟, 熊彬, 王有学等. 2012. 基于改进Krylov子空间算法的井中激电反演. 地球物理学报, 55(11): 3862-3869, doi: 10.6038/j.issn.0001-5733.2012.11.034.

李国防, 闫新亮. 2010. 手持GPS定位精度测试及其在矿产勘查中的应用. 矿产勘查, 1(4): 380-384.

林君, 石磊. 1996. GPS在地球物理勘探中的应用展望. 地学仪器, 4: 1-5.

刘斌, 李术才, 李树忱等. 2012a. 基于不等式约束的最小二乘法三维电阻率反演及其算法优化. 地球物理学报, 55(1): 260-268, doi: 10.6038/j.issn.0001-5733.2012.01.025.

刘斌, 聂利超, 李术才等. 2012b. 三维电阻率空间结构约束反演成像方法. 岩石力学与工程学报, 31(11): 2258-2268.

刘会敏, 赵灏. 2013. 手持GPS在电、磁法勘探测网布设工作中的应用. 西部探矿工程, 25(8): 86-88.

刘少杰, 宋在超, 刘刚. 2006. 野外地质测量中手持GPS定位的误差分析. 四川测绘, 29(1): 11-14.

宛新林, 席道瑛, 高尔根等. 2005. 用改进的光滑约束最小二乘正交分解法实现电阻率三维反演. 地球物理学报, 48(2): 439-444, doi: 10.3321/j.issn:0001-5733.2005.02.030.

王克晓, 李凤友, 刘焕玲等. 2012. 手持GPS定位精度与误差的研究. 全球定位系统, 36(6): 83-86.

吴小平, 徐果明. 1999. 电阻率三维反演中偏导数矩阵的求取与分析. 石油地球物理勘探, 34(4): 363-372.

吴小平, 徐果明. 2000. 利用共轭梯度法的电阻率三维反演研究. 地球物理学报, 43(3): 420-427, doi: 10.3321/j.issn:0001-5733.2000.03.016.

吴小平, 汪彤彤. 2002. 电阻率三维反演方法研究进展. 地球物理学进展, 17(1): 156-162, doi: 10.3969/j.issn.1004-2903.2002.01.023.

吴小平. 2005. 非平坦地形条件下电阻率三维反演. 地球物理学报, 48(4): 932-936, doi: 10.3321/j.issn:0001-5733.2005.04.028.

杨元喜. 2010. 北斗卫星导航系统的进展、贡献与挑战. 测绘学报, 39(1): 1-6.

(本文编辑 何燕)

3D resistivity inversion incorporating topography based on unstructured meshes

WU Xiao-Ping1,2, LIU Yang1,2, WANG Wei3

1LaboratoryofSeismologyandPhysicsofEarth’sInterior,SchoolofEarthandSpaceSciences,UniversityofScienceandTechnologyofChina,Hefei230026,China2NationalGeophysicalObservatoryatMengcheng,Mengcheng233500,China3ResearchInstitute,CNOOCLtd-Shenzhen,Guangzhou510240,China

Surface topographies have a great influence for the direct current (DC) resistivity methods, which cannot be avoided in actual mineral explorations. 3D DC resistivity forward modeling is available in recent years, especially for arbitrary topography and complicated subsurface structures using unstructured grids. However, surface topography is still a challenge for 3D interpretation in realistic applications, which may cause significant error in the 3D resistivity inversion without topography. Additionally it is a hard work to lay measurement points on regular observation network in complex terrains and the corresponding data cannot be simulated on ordinary structured grid. Therefore, 3D resistivity inversion incorporating topography based on unstructured meshes is necessary.We use unstructured finite element method for 3D resistivity forward modeling in order to simulate arbitrary topography and complicated subsurface structures. Our modeling result for a sphere model shows high accuracy in comparison with analytical solution. On the basis, we implement an inexact Gauss-Newton inversion for dipole-dipole configuration on arbitrary surface topography. With the development of GPS/GNSS technique, it is not necessary to lay measurement points on regular observation network exactly in the field survey. The inversion method developed in this paper can inverse the resistivity data from arbitrary dipole-dipole measurements, which is more convenient for 3D interpretation in realistic applications.A random acquisition system for arbitrary dipole-dipole measurements is designed, including 16 dipoles as transmitted electrodes and 100 random diploes as receiver electrodes, i.e. 1600 random dipole-dipole apparent resistivities. Firstly, flat terrain models are used to verify our 3D resistivity inversion for the random dipole-dipole apparent resistivities data, obtaining the inverted model in good agreement with subsurface geoelectrical structures. Then a high resistivity model under a mountain ridge is simulated to show the significant influence from surface topography. The 3D resistivity inversion obtains a low resistivity structure if the topography is ignored, showing a wrong subsurface structure. Our 3D resistivity inversion incorporating topography based on unstructured meshes, in which the topography is directly incorporated into the inversion algorithm, obtains the true high resistivity structure under a mountain ridge. The 3D inversions for models with complicated topography also turn out to be very successful. All dipole-dipole apparent resistivities data for synthetic examples above are generated with 5% Gaussian errors. The 3D resistivity inversion for synthetic data with 10% Gaussian errors is presented finally. Good result shows the 3D resistivity inversion algorithm in this study is very robust.It becomes simple and practicable for the location of measurement points in field geophysical survey using modern GPS/GNSS technique, providing favorable conditions for flexible and efficient 3D resistivity field measurements. In combination to 3D resistivity modeling using unstructured finite element method, we implement an inexact Gauss-Newton 3D resistivity inversion for the random dipole-dipole measurements on arbitrary surface topographies. Synthetic examples show our 3D inversion routines obtain good results for theoretical model and simulated realistic model with complicated topography. The 3D resistivity inversion for synthetic data with 10% Gaussian errors converges stably and the result is also reliable. The 3D resistivity inversion incorporating topography based on unstructured meshes in this paper promotes a key step towards the 3D field interpretation in realistic applications.

Resistivity; Three-dimensional inversion; Unstructured mesh; Topography

国家自然科学基金(41374076,41130420)、国家高技术研究发展计划(863计划)(2014AA06A610、2012AA09A201)、天然气水合物资源勘查与试采工程国家专项(GZH201400305)和国家重大科学仪器设备开发专项项目任务(2011YQ05006008)联合资助.

吴小平,男,1967年生,教授,博士生导师,研究方向为电磁测深和地球内部物理. E-mail:wxp@ustc.edu.cn

10.6038/cjg20150808.

10.6038/cjg20150808

P631

2014-12-22,2015-06-30收修定稿

吴小平, 刘洋, 王威. 2015. 基于非结构网格的电阻率三维带地形反演. 地球物理学报,58(8):2706-2717,

Wu X P, Liu Y, Wang W. 2015. 3D resistivity inversion incorporating topography based on unstructured meshes.ChineseJ.Geophys. (in Chinese),58(8):2706-2717,doi:10.6038/cjg20150808.

猜你喜欢

电阻率反演网格
用全等三角形破解网格题
反演对称变换在解决平面几何问题中的应用
基于防腐层电阻率的埋地管道防腐层退化规律
反射的椭圆随机偏微分方程的网格逼近
重叠网格装配中的一种改进ADT搜索方法
基于曲面展开的自由曲面网格划分
拉普拉斯变换反演方法探讨
随钻电阻率测井的固定探测深度合成方法
等效源反演成像在激发极化法中的研究及应用
海洋可控源电磁场视电阻率计算方法