抗血管内皮生长因子药物治疗继发于炎症及变性等疾病的脉络膜新生血管
2015-02-27张勇进郭敬丽刘卫叶晓峰
张勇进 郭敬丽 刘卫 叶晓峰
·抗血管内皮生长因子专题·
抗血管内皮生长因子药物治疗继发于炎症及变性等疾病的脉络膜新生血管
张勇进 郭敬丽 刘卫 叶晓峰
随着建立在医学科学研究基础上认识的不断深入,血管内皮生长因子(vascular endothelial growth factor, VEGF)被确认是脉络膜新生血管(choroidal neovascularization, CNV)发展过程中介导血管生成和血管通透性的主要原因[1-2]。目前所知的VEGF家族包括5个成员:VEGF-A、VEGF-B、VEGF-C、VEGF-D和胎盘生长因子,其中以VEGF-A最为活跃,并与血管生成、新生血管化和血管通透性增强密切相关。VEGF因而成为治疗CNV的主要目标。大量的临床试验已证明玻璃体腔内注射抗VEGF药物,可有效阻止湿性年龄相关性黄斑变性(wet age-related macular degeneration wAMD)的病理、生理过程,使多数wAMD患者恢复视网膜的形态和提高或稳定神经感觉层功能[2-3]。
抗VEGF药物治疗wAMD的临床研究及临床实践,充分肯定了其对CNV的抑制和治疗作用。在此基础上,很多其他眼底疾病所致的CNV也不断有适应证外(off-label)应用抗VEGF药物治疗成功的病例,包括炎症及变性等疾病,如血管样条纹;炎症或感染,如组织胞浆菌病、结节病、多灶性脉络膜炎(multifocal choroiditis,MC)、点状内层脉络膜病变(punctuate inner choroidopathy,PIC);脉络膜肿瘤(脉络膜痣、脉络膜黑色素瘤、脉络膜血管瘤、脉络膜骨瘤);创伤(脉络膜裂伤、激光光凝术)及遗传性疾病继发(Best病)等。另外,一些未检测到有眼部或全身性疾病的年轻患者发生CNV,则一般将其列为特发性CNV[4-7]。这些疾病与wAMD相比虽不多见,但因CNV的发生往往会造成患者更严重的视力损害,甚至失明。抗VEGF药物的使用也给这部分患者带来了希望[4-7]。
本文将对血管样条纹、卵黄样黄斑变性、视网膜色素变性(retinitis pigmentosa,RP)、脉络膜骨瘤及眼外伤等疾病并发CNV后的抗VEGF治疗及预后情况综合总结如下。
1 眼底血管样条纹
1889年,Doyne[8]首次报道眼底血管样条纹病例,描述为“围绕视盘指向周边视网膜的不规则放射状条纹”;1892年根据其形态命名为血管样条纹[9];1917年,Kofler阐明其发病机制为Bruch膜的结构改变[10]。目前组织病理学表明主要为Bruch膜的弹性纤维变性及视网膜色素上皮细胞萎缩变性;由于长期变性或眼部受到外力造成Bruch膜破裂,导致了CNV的形成[11]。血管条纹症常合并全身系统性疾病,以弹力纤维假黄瘤最为常见,其余还有高弹力纤维发育异常综合征、畸形性骨病及镰状细胞性贫血。血管条纹症一般没有症状,一旦出现症状便累及了中心凹或者黄斑区域出现了CNV。CNV发生率为72%~86%。发生CNV的时间多在中年后。有研究[12]报道平均年龄为50岁,很多患者可能会误诊为wAMD。对于CNV的治疗有激光光凝术、光动力疗法(photodynamic therapy,PDT)及玻璃体腔注射抗VEGF药物。激光治疗只适用于中心凹外新生血管,中心凹下及中心凹旁的CNV则不能用激光治疗[13-14]。对于PDT治疗CNV,研究表明治疗早期效果较好,但晚期达不到预期效果;PDT可作为治疗CNV的辅助疗法,减慢CNV的发展[15-23]。近几年,抗VEGF药物治疗血管条纹症继发CNV成为了研究的热点[24-30]。2011年的一个研究[24]报道,对17例(18眼)血管条纹症继发CNV患者,采用贝伐单抗 1.25 mg注射治疗,4~6周复查;如仍有积液或荧光渗漏,则重复治疗。1年中平均注射4.8次(2~7次),4眼曾接受过平均2次PDT治疗。治疗后1年,平均视力明显提高(自20/80到20/40),中心视网膜厚度减少(自404.2 μm到300.5 μm),无明显眼部及全身并发症。因而认为,抗VEGF药物对患者的视力和解剖形态都有所改善,有望成为治疗血管条纹症继发CNV患者的药物;但需密切随访,必要时可能需重复治疗。
另一研究[30]报道,对15眼的中心凹旁或外CNV玻璃体腔注射贝伐单抗治疗,观察1年,平均视力较治疗前无明显提高,但有5眼视力提高2行以上,有2眼CNV进展至中心凹下。平均视力较治疗前无明显提高的结果与以往每月注射雷珠单抗治疗1例1年的报道[25]相同。有一综述[31]总结了近年发表的激光、PDT及抗VEGF药物治疗的54篇论文,这些报道在多数缺乏对照的情况下,均得出了抗VEGF治疗能够提高或稳定视力;PDT能延缓病情进展但视力只是稳定或下降;激光与PDT组治疗结果相似,其病例仅限于中心凹外CNV病灶且复发多见,对视网膜损伤更大。在对PDT和(或)抗VEGF药物治疗约160例数据分析后,发现抗VEGF组最后视力较PDT组高6行,联合治疗结果比单用抗VEGF治疗无明显优势。治疗前的视力与治疗效果密切相关,因而认为抗VEGF治疗是目前最有效的方法,但远期疗效仍需大样本及长期随访来验证[24-31]。
我院在治疗这类疾病时,既有PDT也有抗VEGF药物的应用,虽未有系统总结,但临床观察发现,抗VEGF药物治疗对提高或稳定视力有更大优势(图1)。
图1. 血管条纹症继发CNV 上图:治疗前眼底照及相干光断层扫描(OCT)显示CNV伴出血水肿,视力0.2;下图:抗VEGF玻璃体腔注射3次,水肿、出血消失,病灶减小,视力提高至0.4
2 RP
RP是以视网膜锥杆细胞萎缩为特点的遗传性疾病,发病率为1/5 000[32-33]。RP患者有夜盲,进行性周边视野丧失,最终导致失明[32]。临床检查显示RP患者的视网膜逐渐变薄,部分患者发现黄斑水肿及视网膜色素上皮功能异常,从而导致视网膜屏障紊乱,进一步导致视力下降[32,34]。RP继发CNV的病例也时有报道[35-37],有采用PDT[35]或玻璃体腔注射抗VEGF治疗的个案报道[36-37]。玻璃体腔内注射雷珠单抗虽然可以减少RP患者的黄斑厚度及改善水肿情况,但视功能没有改善[38]。
我院对继发于RP的CNV治疗也经历了PDT到抗VEGF的发展过程,目前抗VEGF治疗是这类疾病治疗的首选方法(图2)。但因黄斑部本身的退行改变,可能最终只能改善CNV带来的水肿、出血,而视力改善不明显。
图2. 视网膜色素变性继发CNV 上图:治疗前眼底彩照见视网膜血管细,后极部色素紊乱,骨细胞样色素沉着,黄斑有环状萎缩,隐约见片状出血;OCT显示黄斑部CNV病灶伴水肿,视力0.2;下图:雷珠单抗玻璃体腔注射2次后眼底彩照和OCT图,出血、水肿吸收,CNV病灶减小,视力提高至0.4
3 Best卵黄样黄斑营养不良
该病是一种由于VMD2基因突变造成的常染色体显性遗传疾病,基因突变造成的bestrophin蛋白改变,使RPEE基底细胞膜的氯离子通道功能受到影响,造成脂褐素堆积。患者儿童期发病,眼底典型表现为黄斑部的卵黄样病灶,早期视力可正常,逐渐进入卵黄破裂期、萎缩期、瘢痕期,伴有视力缓慢下降。即使在瘢痕期,很多患者仍可有0.5左右的视力。据统计约20%的患者可发生CNV,造成视力突降[39]。这也是患者就诊的主要原因。
CNV如位于中心凹下或旁,不适宜激光治疗,PDT曾有报道取得较好效果。抗VEGF药物的出现,使治疗进入新的阶段。抗VEGF治疗的报道目前均为个案[40-42],药物均包括雷珠单抗和贝伐单抗,患者年龄最小为6岁[42],取得视力提高。其中Cennamo等[41]报道的病例为双眼继发CNV的男性17岁患者,视力右眼5/10,左眼6/10,玻璃体腔注射1次贝伐单抗1.25 mg,1个月后视力恢复至10/10,并维持至最后随访的18个月后。我院也对Best卵黄样黄斑营养不良继发CNV具有一定的临床经验,治疗后患者多为视力稳定或无明显视力提高,可能与其就诊时间较晚有关。
4 葡萄膜炎继发CNV
葡萄膜炎常常引起黄斑水肿(macular edema, ME)和CNV,导致视功能的损伤;ME主要是由于内层和外层的视网膜屏障功能受损引起,CNV的形成是由于视网膜色素上皮损伤和Bruch膜破坏导致,并有许多细胞因子参与炎症过程,从而导致血管的渗透性改变和新生血管生成。
5 MC和PIC
Nozik等[43]首次报道MC是一种伴有前葡萄膜炎和玻璃体炎的多发性脉络膜视网膜病变,MC和PIC好发于中青年女性,常伴有近视,眼底有多发的黄白色病灶。通常情况下,MC的视力预后较好,但一旦出现并发症ME和CNV,会导致视力显著下降;其中CNV更为常见,占27%~32%[44-46]。对于MC继发CNV尚无统一的治疗方案,激光光凝及PDT等治疗方案都存在其局限性[47-52]。全身和局部应用皮质激素治疗可控制MC的炎症,但对于中心凹的CNV的治疗效果仍存在争议[47-48];激光光凝早期治疗有效,但激光瘢痕的扩大及较高的复发率是其最大的缺陷[49-50];还有研究表明PDT治疗可以稳定中心凹及中心凹旁的CNV患者视力,但并无显著提高[51-52]。针对这些治疗的局限性,有研究[6,53,54]表明使用玻璃体腔内注射抗VEGF治疗MC引起的CNV,抗VEGF药物可有效抑制VEGF引起的促炎作用。Shimada等[55]证实了VEGF参与MC引起CNV的致病机制过程。对于中心凹和中心凹旁的CNV患者,可以考虑玻璃体腔内注射抗VEGF药物,可提高其视力。
6 匍行性脉络膜炎
匍行性脉络膜炎(serpiginouschoroiditis , SC)是一种少见的慢性复发性葡萄膜炎,常双侧发病,无性别差异[56]。典型临床表现为视网膜色素上皮层的灰白(黄)色盘状病灶,常起始于视乳头附近,向后极部蔓延;累及黄斑区可致明显视力下降。病灶起始于黄斑区向周围蔓延病例较少见,可引起早期视力严重下降[57]。SC患者的复发时间由数周到数月不等,1/3的患者伴眼前节和玻璃体炎症[56,58]。少数病例合并有视网膜血管炎、视乳头炎、视网膜分支静脉阻塞、浆液性视网膜脱离及视盘新生血管[59-61]。高达35%患者并发CNV[61-64],对于CNV的治疗仍存在争议,1篇病例报道显示玻璃体腔内注射雷珠单抗可以改善症状[65]。
Rouvas等[66]于2011年总结了15例(16眼)葡萄膜炎继发CNV经雷珠单抗玻璃体腔内注射治疗的研究结果,采用每月随访,按需重复治疗方法,其中2例为SC且均为中心凹下CNV,各注射2次。经13~16个月随访后,1例视力较基线提高15个字母,中心凹视网膜厚度由274 μm减至252 μm;1例保持基线视力,中心凹视网膜厚度由285 μm减至263 μm。显示抗VEGF药物治疗SC引起的CNV有一定效果。虽然需要更多的临床研究来证实抗VEGF药物治疗SC继发CNV的疗效,但因这类病例较少见,很难实现大规模的临床研究。
7 眼外伤继发性CNV
眼球前部遭受的冲击力传导到达眼底的后极部,使眼球横向扩展,由于脉络膜抗延伸力不如视网膜,导致视网膜色素上皮、玻璃膜和脉络膜毛细血管层复合体组织撕裂,而脉络膜组织的大血管层完整。脉络膜裂伤可以是直接性,也可以是间接性;80%的脉络膜裂伤是间接性的[67-68]。间接性通常是闭合性的眼球钝挫伤。临床主要表现依据损伤的程度及部位不同,玻璃体积血导致眼底不能见;较小的脉络膜出血不易发现,较大的脉络膜出血呈视网膜下青灰色的圆形隆起;少数患者可出现CNV。以前研究[69-71]表明眼球的钝挫伤主要发生于视乳头的颞侧和黄斑附近。5%~10%的患者在脉络膜裂伤治愈后发生CNV,导致视力下降[69-71]。Secretan等[71]报道了79例患者诊断为脉络膜钝挫伤(间接性),其中20%的患者发生CNV。对于CNV的治疗,激光光凝术、PDT及手术等治疗方案效果均不理想。2006年,Ament等[72]分析了1993~2001年麻省眼耳医院111例脉络膜裂伤的顿挫伤患者,随访时间平均20个月,12眼发生了CNV。其中5眼未行治疗,视力均在20/100以下;4例接受激光治疗,1例视力达到20/40,其他均在20/60以下;1例激光治疗后再行手术治疗,视力为指数;1例只进行了手术,视力为20/50;1例行3次PDT治疗,出血渗出吸收,1年后视力为20/320。无论是激光还是PDT或手术,视力恢复都不够理想。
近期有陆续报道抗VEGF药物应用于外伤性脉络膜病变引起CNV的病例[73-75]。Chanana等[73]研究表明,玻璃体腔内注射贝伐单抗治疗CNV,视力由0.1提高到0.4。Takahashi等(2011)[75]报道1例43岁男性眼球顿挫伤脉络膜裂伤继发中心凹下CNV,注射贝伐单抗及筋膜囊注射4 mg地塞米松后,14 d后出血、水肿吸收,CNV病灶减小,视力自0.3恢复至0.8并维持至半年后最后1次随访。Liang等[76]发表的病例报告中显示患者玻璃体腔内注射雷珠单抗并随访12个月后,视力由0.5上升到0.8。
我们在临床中也有1例外伤性脉络膜裂伤继发CNV的年轻患者,治疗前视力为0.12,玻璃体腔注射2次雷珠单抗后病变稳定,出血、水肿吸收,视力提高至 0.3(图3)。
8 脉络膜骨瘤继发CNV
脉络膜骨瘤是一种良性骨性肿瘤,发病机制目前不清楚,慢性轻度炎症可能是某些病例的原因。典型病例病灶发生于视乳头周围,多发生于青春期或成人,以女性多见。病灶呈橘黄色,有伪足边界清晰,病灶可包绕整个视乳头,可双眼发病。B超显示骨结构呈高反射,阻挡正常眼眶的回声。CT对肿瘤诊断有独到处。脉络膜骨瘤可有缓慢生长多年,如累及黄斑则会造成视力下降。CNV是累及黄斑部脉络膜骨瘤的常见并发症[77-78],以往治疗多采用激光或PDT治疗,目前使用抗VEGF治疗取得较好结果(图4)。
图3. 眼外伤脉络膜裂伤继发CNV 上图:治疗前眼底彩照见累及黄斑中心凹部的脉络膜弧形裂伤及中心凹处与其相连黄灰色病灶,附近有少量出血; OCT显示黄斑部中心凹下CNV病灶伴水肿,视力0.12;下图:雷珠单抗玻璃体腔内注射2次10个月后眼底彩照和OCT图,出血、水肿吸收,CNV病灶减小,视力提高至0.3
图4. 脉络膜骨瘤继发CNV 上图:治疗前眼底彩照及OCT图,骨瘤边缘见CNV病灶伴出血、水肿,视力0.05;下图:4次雷珠单抗玻璃体腔内注射后眼底彩照和OCT图,出血、水肿吸收,CNV病灶减小,视力提高至0.5
9 结语
抗VEGF药物的出现,为治疗伴CNV的眼底疾病提供了新的方法。相对于其他的治疗方法,其并发症更少。局部应用抗VEGF药物能有效控制CNV的发展,并可进行反复玻璃体腔内注射治疗复发病例。但对炎症和变性疾病所致的CNV,因病例较少,缺乏大规模临床研究,因而也很难有标准的治疗规程,尚需借鉴临床治疗wAMD或其他CNV疾病的经验。
[ 1 ] Miller JW, Le Couter J, Strauss EC, et al. Vascular endothelial growth factor α in intraocular vascular disease[J]. Ophthalmology, 2013,120(1):106-114.
[ 2 ] Rosenfeld PJ, Brown DM, Heler JS, et al. Ranibizumab for neovascular age-related macular degeneration[J]. N Engl J Med, 2006,355(14):1416-1431.
[ 3 ] Brown DM,KaiserPK,Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration[J]. N Engl J Med ,2006,355(14):1432-1444.
[ 4 ] Gupta B, Elagouz M, Sivaprasad S. Intravitreal bevacizumab for choroidal neovascularisation secondary to causes other than age-related macular degeneration[J].Eye (Lond), 2010,24(2):203-213.
[ 5 ] Erol MK, Ozdemir O, Coban DT,et al. Ranibizumab treatment for choroidal neovascularization secondary to causes other than age-related macular degeneration with good baseline visual acuity[J]. Semin Ophthalmol,2014 ,29(2):108-113.
[ 6 ] Chang LK, Spaide RF, Brue C,et al. Bevacizumab treatment for subfoveal choroidal neovascularization from causes other than age-related macular degeneration[J]. Arch Ophthalmol, 2008,126(7):941-945.
[ 7 ] Triantafylla M, Massa HF, Dardabounis D, et al. Ranibizumab for the treatment of degenerative ocular conditions[J].Clin Ophthalmol, 2014, 8:1187-1198.
[ 8 ] Doyne RW. Choroidal and retinal changes. The results of blows on the eyes[J]. Trans OphthalmolSoc U K,1889,9:128.
[ 9 ] Knapp H. On the formation of dark angioid streaks as unusual metamorphosis of retinal hemorrhage[J]. Arch Ophthalmol, 1892,26:289-292.
[10] Kofler A. Beitrage zur Kenntnis der angioid Streaks (Knapp)[J]. KIinAugenheilkd, 1917,82:134-149.
[11] Dreyer R,Green WR. The pathology of angioidstreaks:a study of twenty-one cases[J]. Trans Pa Acad Ophthalmol Otolarygol, 1978,31(2):158-167.
[12] Orssaud C, Roche O, Dufier JL,et al.Visual Impairment in Pseudoxanthoma Elasticum: A Survey of 40 Patients[J].Ophthalmic Genet, 2014. Epub ahead of print.
[13] Gelisken O, Hendrikse F, Deutman AF. A long-term follow-up study of laser coagulation of neovascular membranes in angioidstreaks[J]. Am J Ophthalmol, 1988,105(3):299-303.
[14] Lim JI, Bressler NM, Marsh MJ, et al. Laser treatment of choroidal neovascularization in patients with angioidstreaks[J]. Am J Ophthalmol, 1993,116(4):414-423.
[15] Sickenberg M, Schmidt-Erfurth , Miller JW, et al. A preliminary study of photodynamic therapy using verteporfin for choroidal neovascularization in pathologic myopia, ocular histoplasmosis syndrome, angioid streaks, and idiopathic causes[J]. Arch Ophthalmol, 2000,118(3):327-336.
[16] Karacorlu M, Karacorlu S, Ozdemir H, et al. Photodynamic therapy with verteporfin for choroidal neovascularization in patients with angioidstreaks[J]. Am J Ophthalmol, 2002,134(3):360-366.
[17] Shaikh S, Ruby AJ, Williams GA. Photodynamic therapy using verteporfin for choroidal neovascularization in angioidstreaks[J]. Am J Ophthalmol, 2003,135(1):1-6.
[18] Mennel S, Schmidt JC, Meyer CH. Therapeutic strategies in choroidal neovascularizations secondary to angioidstreaks[J]. Am J Ophthalmol, 2003,136(30):580-582.
[19] Menchini U, Virgili G, Introini U, et al. Outcome of choroidal neovascularization in angioid streaks after photodynamic therapy[J]. Retina, 2004,24(5):763-771.
[20] Browning AC, Chung AK, Ghanchi F, et al. Verteporfin photodynamic therapy of choroidal neovascularization in angioid streaks: one-year results of a prospective case series[J]. Ophthalmology, 2005,112(7):1227-1231.
[21] Heimann H, Gelisken F, Wachtlin J, et al. Photodynamic therapy with verteporfin for choroidal neovascularisation associated with angioidstreaks[J]. Graefes Arch Clin Exp Ophthalmol, 2005,243(11):1115-1123.
[22] Arias L, Pujol O, Rubio M, et al. Long-term results of photodynamic therapy for the treatment of choroidal neovascularization secondary to angioidstreaks[J]. Graefes Arch Clin Exp Ophthalmol, 2006,244(6):753-757.
[23] Ladas ID, Georgalas I, Rouvas AA, et al. Photodynamic therapy with verteporfin of choroidal neovascularization in angioid streaks: conventional versus early retreatment[J]. Eur J Ophthalmol, 2005,15(1):69-73.
[24] EI Matri L, Kort F, Bouraoui R,et al. Intravitrealbevacizumab for the treatment of choroidal neovascularization secondary to angioid streaks: one year of follow-up[J].Acta Ophthalmol, 2011,89(7):641-646.
[25] Finger RP, CharbelIssa P, Hendig D, et al.Monthlyranibizumab for choroidal neovascularizationssecondary to angioid streaks in pseudoxanthoma elasticum:a one-year prospective study[J]. Am J Ophthalmol,2011,152(4):695-703.
[26] Mimoun G, Tilleul J, Leys A, et al. Intravitrealranibizumab for choroidal neovascularization in angioid streaks[J]. Am J Ophthalmol, 2010,150(5):692-700.
[27] González-Gómez A, Morillo MJ, González-Escobar AB,et al. Choroidal neovascularization secondary to pseudoxanthoma elasticom treated with ranibizumab:a report of 2 cases[J]. Arch Soc Esp Oftalmol, 2012,87(5):153-156.
[28] Zebardast N, Adelman RA. Intravitrealranibizumabfortreatment of choroidal neovascularization secondary to angioid streaks in pseudoxanthoma elasticum: five-year follow-up[J]. Semin Ophthalmol, 2012,27(3-4):61-64.
[29] Lazaros K, Leonidas Z. Intravitrealranibizumab as primary treatment neovascular membrane associated with angioidstreaks[J]. Acta Ophthalmol, 2010,88(3):100-101.
[30] BattagliaParodi M, Iacono P, La Spina C, et al. Intravitreal bevacizumab for nonsubfoveal choroidal neovascularization associated with angioid streaks[J]. Am J Ophthalmol, 2014,157(2):374-377.
[31] Gliem M, Finger RP, Fimmers R, et al. Treatment of choroidal neovascularization due to angioid streaks: a comprehensive review[J].Retina, 2013,33(7):1300-1314.
[32] Hamel C. Retinitis pigmentosa[J]. Orphanet J Rare Dis,2006,1:40.
[33] Adler R. Mechanisms of photoreceptor death in retinal degenerations. From the cell biology of the 1990s to the ophthalmology of the 21st century?[J]. Arch Ophthalmol,1996,114(1):79-83.
[34] Chong NH, Bird AC. Management of inherited outer retinal dystrophies: present and future[J]. Br J Ophthalmol, 1999,83(1):120-122.
[35] Cheng JY, Adrian KH. Photodynamic therapy for choroidal neovascularization in stargardt disease and retinitis pigmentosa[J].Retin Cases Brief Rep,2009,3(4):388-390.
[36] Malik A, Sood S, Narang S. Successful treatment of choroidal neovascular membrane in retinitis pigmentosa with intravitreal bevacizumab[J].Int Ophthalmol, 2010,30(4):425-428.
[37] BattagliaParodi M, De Benedetto U, Knutsson KA, et al. Juxtafoveal choroidal neovascularization associated with retinitis pigmentosa treated with intravitreal bevacizumab[J]. J Ocul Pharmacol Ther, 2012,28(2):202-204.
[38] Salom D, Diaz-Llopis M, García-Delpech S, et al. Intravitrealranibizumab in the treatment of cystoid macular edema associated with retinitis pigmentosa[J]. J Ocul Pharmacol Ther, 2010,26(5):531-532.
[39] Gass JDM. Stereoscopic atlas of macular diseases: diagnosis and treatment[M].4th ed. St Louis: Mosby, 1997:304-313.
[40] Querques G, Bocco MC, Soubrane G, et al. Intravitreal ranibizumab (Lucentis) for choroidal neovascularization associated with vitelliform macular dystrophy[J].Acta Ophthalmol,2008,86(6):694-695.
[41] Cennamo G, Cesarano I, Vecchio EC, et al.Functional and anatomic changes in bilateral choroidal neovascularization associated with vitelliform macular dystrophy after intravitreal bevacizumab[J].J Ocul Pharmacol Ther,2012,28(6):643-646.
[42] Chhablani J, Jalali S.Intravitreal bevacizumab for choroidal neovascularization secondary to Best vitelliform macular dystrophy in a 6-year-old child[J].Eur J Ophthalmol, 2012,22(4):677-679.
[43] Nozik RA, Dorsch W. A new chorioretinopathy associated with anterior uveitis[J]. Am J Ophthalmol,1973,76(5):758-762.
[44] Tatar O, Yoeruek E, Szurman P, et al. Effect of bevacizumab on inflammation and proliferation in human choroidal neovascularization[J]. Arch Ophthalmol, 2008,126(6):782-790.
[45] Lardenoye CW, Van der Lelij A, de Loos WS, et al. Peripheral multifocal chorioretinitis: a distinct clinical entity?[J]. Ophthalmology,1997,104(11):1820-1826.
[46] Brown J Jr, Folk JC, Reddy CV, et al. Visual prognosis of multifocal choroiditis, punctate inner choroidopathy, and the diffuse subretinal fibrosis syndrome[J]. Ophthalmology, 1996,103(7):1100-1105.
[47] Michel SS, Ekong A, Baltatzis S, et al. Multifocal choroiditis and panuveitis: immunomodulatorytherapy[J]. Ophthalmology, 2002,109(2):378-383.
[48] Nussenblatt RB, Coleman H, Jirawuthiworavong G, et al. The treatment of multifocal choroiditis associated choroidal neovascularization with sirolimus (rapamycin)[J]. Acta Ophthalmol Scand, 2007,85(2):230-231.
[49] Olsen TW, Capone A, Sternberg P, et al.Subfoveal choroidal neovascularization in punctate inner choroidopathy. Surgical management and pathologic findings[J]. Ophthalmology, 1996,103(12):2061-2069.
[50] Thomas MA, Dickinson JD, Melberg NS, et al. Visual results after surgical removal of subfoveal choroidal neovascularmembranes[J]. Ophthalmology, 1994,101(8):1384-1396.
[51] Parodi MB, Di Crecchio L, Lanzetta P, et al. Photodynamic therapy with verteporfin for subfoveal choroidal neovascularization associated with multifocal choroiditis[J]. Am J Ophthalmol, 2004,138(20): 263-269.
[52] Parodi MB, Iacono P, Spasse S, et al. Photodynamic therapy for juxtafoveal choroidal neovascularization associated with multifocal choroiditis[J]. Am J Ophthalmol, 2006,141(1):23-26.
[53] Chan WM, Lai TY, Liu DT, et al. Intravitrealbevacizumab (Avastin) for choroidal neovascularization secondary to central serous chorioretinopathy, secondary to punctate inner choroidopathy, or of idiopathic origin[J]. Am J Ophthalmol,2007,143(6): 977-983.
[54] Fine HF, Zhitomirsky IB, Freund KB, et al.Bevacizumab (Avastin) and ranibizumab (Lucentis) for choroidal neovascularization in multifocal choroiditis[J]. Retina, 2009,29(1):8-12.
[55] Shimada H, Yuzawa M, Hirose T, et al. Pathological findings of multifocal choroiditis with panuveitis and punctate inner choroidopathy[J]. Jpn J Ophthalmol, 2008,52(4):282-288.
[56] Laatikainen L, Erkkila H. Serpiginous choroiditis[J]. Br J Ophthalmol, 1974,58(9):777-783.
[57] Mansour AM, Jampol LK, Packo HK, et al. Macular serpiginouschoroiditis[J]. Retina, 1988, 8(2):125-129.
[58] Masi RJ, O’Connor R, Kimura SJ. Anterior uveitis in geographic or serpiginouschoroiditis[J]. Am J Ophthalmol, 1978,86:228-231.
[59] Sahel JA, Weber M, Conlon MR, et al. Pathology of the uveal tract; in Albert DM, Jakobiec FA (eds): Principles and Practices of Ophthalmology: Clinical Practice. Philadelphia[J]. Saunders, 1994, 182:2145-2179.
[60] Wojno T, Meredith TA. Unusual findings in serpiginouschoroiditis[J]. Am J Ophthalmol, 1982,94(5):650-653.
[61] Laatikainen L, Erkkilä H.Subretinal and disc neovascularization in serpiginouschoroiditis[J]. Br J Ophthalmol, 1982,66(5):326-328.
[62] Jampol JK, Orth D, Daily MJ, et al. Subretinal neovascularization with geographic (serpiginous) choroiditis[J]. Am J Ophthalmol,1979,88(4):683-686.
[63] Gass JDM.Serpiginous Choroiditis. Stereoscopic atlas of macular diseases: diagnosis and treatment[M]. 4th ed. St Louis: Mosby, 1997:158-165.
[64] Christmas NH, Ok KT, Oh DM, et al. Long-term follow-up of patients with serpiginouschoroiditis[J]. Retina, 2002,22(5):550-556.
[65] Song MH, Roh YJ.Intravitrealranibizumab for choroidal neovascularisation in serpiginouschoroiditis[J]. Eye (Lond), 2009, 23(9):1873-1875.
[66] Rouvas A, Petrou P, DouvaliM,et al. Intravitreal ranibizumab for the treatment of inflammatory choroidal neovascularization[J].Retina, 2011, 31(5):871-879.
[67] Williams DF, Mieler WF, Williams GA. Posterior segment manifestations of ocular trauma[J]. Retina,1990,10(Suppl 1):35-44.
[68] Wood CM, Richardson J. Chorioretinal neovascular membranes complicating contusional eye injuries with indirect choroidal ruptures[J]. Br J Ophthalmol, 1990,74(2):93-96.
[69] Wyszynski RE, Grossniklaus HE, Frank KE. Indirect choroidal rupture secondary to blunt ocular trauma: a review of eight eyes[J].Retina, 1988,8(4):237-243.
[70] Hart JC, Natsikos VE, Raistrick ER, et al. Indirect choroidal tears at the posterior pole: a fluorescein angiographic and perimetric study[J]. Br J Ophthalmol,1980,64(1):59-67.
[71] Secrétan M, Sickenberg M, Zografos L, et al. Morphometric characteristics of traumatic choroidal ruptures associated with neovascularization[J].Retina,1998,18(1):62-66.
[72] Ament CS, Zacks DN, Lane AM, et al.Predictors of visual outcome and choroidal neovascular membrane formation after traumatic choroidal rupture[J].Arch Ophthalmol, 2006,124(7):957-966.
[73] Chanana B, Azad RV, Kumar N. Intravitreal bevacizumab for subfoveal choroidal neovascularization secondary to traumatic choroidal rupture[J]. Eye(Lond), 2009,23(11):2125-2126.
[74] Yadav NK, Bharghav M, Vasudha K, et al. Choroidal neovascular membrane complicating traumatic choroidal rupture managed by intravitrealbevacizumab[J]. Eye,2009,23(9):1872-1873.
[75] Takahashi M, Kinoshita S, Saito W, et al.Choroidal neovascularization in a patient with blunt trauma-caused traumatic retinopathy without choroidal rupture[J].Graefes Arch Clin Exp Ophthalmol, 2011,249(1):137-140.
[76] Liang F, Puche N, Soubrane G, et al.Intravitreal ranibizumab for choroidal neovascularization related to traumatic Bruch's membrane rupture[J]. Graefes Arch Clin Exp Ophthalmol, 2009, 247(9):1285-1288.
[77] Browning DJ. Choroidal osteoma: observations from a community setting[J].Ophthalmology, 2003,110(7):1327-1334.
[78] Tsuchihashi T, Murayama K, Saito T, et al.Midperipheral mottling pigmentation with familial choroidal osteoma[J].Retina, 2005,25(1):63-68.
(本文编辑 诸静英)
复旦大学附属眼耳鼻喉科医院眼科 上海 200031
张勇进(Email:yongjinzhang@yahoo.com)
10.14166/j.issn.1671-2420.2015.04.006
2015-06-08)