动脉粥样硬化斑块组成和治疗的新进展
2015-01-22董慧于波
董慧,于波
• 综述 •
动脉粥样硬化斑块组成和治疗的新进展
董慧,于波
动脉粥样硬化的研究有两种观点,一种认为动脉粥样硬化是局部病变,另一种则认为是全身系统疾病[1]。既往将动脉粥样硬化作为全身系统性疾病理解、诊断和治疗,而不是局部靶向治疗。局部靶向治疗能有效降低心肌梗死发生和死亡风险。随着多种观察斑块的侵入或非侵入性影像学方法的兴起,对局部高风险斑块开始重新关注和深入。不仅可在尸检中了解动脉粥样硬化斑块,新兴的影像学方法也可呈现在体斑块的生物学特征,同时为靶向治疗提供依据。本文主要阐述近年来在动脉粥样硬化领域中的重大发现,包括斑块生物学、影像学和新兴的治疗方法。
1 高风险斑块定义
1.1 病理学观察结果 对有破裂高风险斑块的传统认知主要来源于尸检中对破裂斑块和非破裂斑块的病理学观察。Narula等[2]近期对213例心脏病猝死患者的295个斑块分析,比较105个稳定斑块、88个薄帽纤维粥样斑块(TCFA)和102个破裂斑块的形态学特征:纤维帽厚度、管腔狭窄百分比、斑块面积、坏死核心面积、巨噬细胞面积和钙化。纤维帽厚度是斑块类型最佳的分类标记物,破裂斑块的纤维帽厚度小于54μm,多数TCFA的纤维帽厚度为54~84μm,稳定斑块的纤维帽厚度大于84μm。除了纤维帽厚度,识别TCFA的最佳标志物是巨噬细胞的渗透和坏死核心。
心肌梗死多发生于非梗阻斑块,多数TCFA狭窄率为50%,70%破裂斑块狭窄率为75%[3]。这项病理学观察数据与利用血管再形成和药物评估的临床试验结果(COURAGE)中的亚组血管造影结果和冠状动脉粥样硬化的研究(PROSPECT)血管内超声结果一致:在COURAGE中非再形成血管50%病变预示随后急性冠脉综合征(ACS)的发生[4]。在PROSPECT中尽管血管造影显示轻微的管腔狭窄,非罪犯病变能引起与斑块负荷和减少的最小管腔面积相关联的缺血性事件[5]。Puri等[6]最近总结了一致的观察结果,对定义高风险斑块有重要意义。
1.2 斑块进展的分子和细胞学基础传统观点认为巨噬细胞和单核细胞通过吞噬胆固醇脂滴和碎片,形成泡沫细胞及坏死,参与炎症和斑块破裂[7]。斑块中巨噬细胞和单核细胞的积聚是否来源于渗透,尚存争议。近年有研究显示,斑块中这些细胞是通过局部增殖形成的[8]。
游离血红素和氧化应激在斑块进展中的作用。当斑块内出血,游离血红素释放入斑块,亚铁血红素是活性氧(ROS)有效的发生器。循环中的结合珠蛋白结合游离血红素,经CD163受体清除,降低氧化活性。在一项大动脉斑块的研究中,结合珠蛋白位点(Hp2-2)的遗传多态性与亚铁血红素的缺陷性衰减有关[9]。
最后是脂质中介物高密度脂蛋白在斑块生物学中的作用。关于高密度脂蛋白在斑块进展中的作用的经典假设是从泡沫细胞流出或逆向转运的胆固醇能降低病变或炎症[10]。尽管以往临床流行病学资料显示高密度脂蛋白胆固醇与慢性冠脉疾病风险呈负相关,然而最近的达塞曲匹试验[11]使高密度脂蛋白胆固醇的机械论学说在斑块进程中的作用越来越具有争议[12]。一项孟德尔随机试验显示尽管相应的高密度脂蛋白胆固醇呈现有意义的升高,但其内皮脂肪酶基因(LIPGAsn396Ser)与心肌梗死风险之间却没有关系[13]。可能的解释是,高密度脂蛋白胆固醇水平可能不是其功能的衡量标准。最新的证据突出高密度脂蛋白颗粒数量[14]和高密度脂蛋白胆固醇组在预测风险和斑块进展的重要性[15]。
2 定义在体高风险斑块
高风险斑块研究从病理学、分子生物学和细胞学转向影像学,使描绘在体高风险斑块的形态成为可能。
2.1 血管内超声(IVUS)PROSPECT的一项射频血管内超声(RF-IVUS)的分析提示在冠心病患者亚组斑块形态学的差异。动脉粥样硬化慢性肾脏患者,坏死核心负荷更大和纤维组织更少[16]。糖尿病和代谢综合征的患者斑块表现出斑块负荷更大、管腔面积更小、坏死核心和钙化更大,其中坏死核心和钙化与随后的主要心血管事件相关[17]。
血管内超声还用于研究不同钙化模式与斑块进展的关系。虽然广泛的钙化斑块被认为不易破裂,但“多斑点”钙化斑块与缺血性事件相关。Kataoka等[18]发现,多斑点钙化斑块(钙化长度1~4 mm,角度<90°的病变)与男性、糖尿病、心梗病史、低水平高密度脂蛋白胆固醇、体积较大斑块百分比相关。相反地,血管内超声定义钙化结节为不规则的、突出于管腔表面的独立钙化,具有较低的缺血事件风险[19]。
尽管在PROSPECT和易损动脉粥样硬化的研究中血管内超声检测的TCFA是随后缺血性事件独立的预测因子[20],但RF-IVUS检测存在局限性[21]。RF-IVUS的轴向分辨率不能够精确测量纤维帽厚度[22]。
2.2 光学相干断层影像学技术(OCT)OCT是利用红外光线的背反射测量断层的深度,具有轴向5~20μm、横向30μm的分辨率,分辨率高于IVUS[23]。对于高风险斑块的辨别,OCT能够评估脂质内容和巨噬细胞渗透,测量纤维帽厚度。近年来发表的文章为OCT图像的获取和测量制定了一致的标准,为其临床应用提供了便利[24]。
在一项研究中,对98例ACS患者、230个非罪犯斑块进行分析,糖尿病患者较非糖尿病患者脂质体积指数更大、钙化和血栓更广泛,纤维帽厚度与糖基化血红素(HbA1c)呈负相关。TCFA和巨噬细胞渗透最常见于HbA1c≥8%的患者[25]。一项关于17例ACS患者的45个非罪犯斑块和87例非ACS患者的203个非罪犯斑块的分析显示,ACS患者的斑块
具有更大的脂质体积指数,纤维帽厚度更薄,TCFA、巨噬细胞渗透和血栓更多[26]。OCT在非阻塞性斑块中能预测斑块进展:包括内膜撕裂、微通道、脂质池、TCFA、巨噬细胞浸润和内部的血栓等指标[27]。
Jia等[28]使用OCT对介入前126例ACS患者的罪犯病变评估发现,43.7%斑块破裂、31.0%斑块侵蚀和7.9%钙化结节。斑块侵蚀与年龄较低、脂质斑块较少、纤维帽较厚相关,而钙化结节与IVUS的观察结果一致,与较高年龄相关。总之,尽管OCT仍然缺少临床应用的指标,但大量数据证明OCT具有重要作用。
2.3 计算机断层扫描(CT)尽管CT识别斑块成分与RFIVUS[29]精确度相近,但CT的空间分辨率限制了纤维帽厚度的测量,从而阻碍其对TCFA的识别。
一项显著的进展是“餐巾环征”的确定,它定义为冠状动脉粥样硬化斑块在CT上显示环状的衰减。餐巾环征的确定对于动脉粥样硬化病变有很高的预测价值[30]。在随后的冠状动脉模型和冠心病患者1174个斑块的(2.3±0.8)年随访中,低衰减斑块、明确的动脉重塑和餐巾环征成为ACS的独立预测因子[31]。
2.4 心脏核磁共振成像(CMR)与分子成像此前广泛用于评价颈动脉斑块的心脏核磁共振成像,近年来转向应用于描绘冠状动脉斑块。在一项冠状动脉的28个斑块CMR的T1、T2与超短波反射的研究中,CMR诊断的特异性和敏感性较高,分别为:辨认钙化(100%、95%),脂质丰富的坏死核心(90%、75%),其中28个斑块中22个与组织学分类完全一致[32]。尽管是试验性的,但这些数据让未来CMR应用于在体冠状动脉斑块影像学充满希望。
与斑块进展相关的分子标记物影像学检查是识别高风险斑块的方法之一[33]。这些方法为有关斑块进展的靶细胞或靶分子设计配对探针,通过影像学检测。可被分子标记物和影像检测的包括:细胞活性、吞噬作用、脂蛋白、新陈代谢活性、氧化压力、新血管形成、基质金属蛋白酶活性、斑块内出血和血栓、微钙化、巨噬细胞等[34]。
正电子放射断层造影术(PET)、CMR、单光子发射计算机断层成像、光谱CT、近红外荧光等在探索分子标记物方面最有前景[35],其中,18F-氟脱氧葡萄糖(FDG)PET具有高敏感性,可行性较强[36],但也存在局限性,空间分辨率的局限和放射性同位素的依赖。
3 评估斑块对全身系统治疗的反应
3.1 他汀类药物和脂质斑块羟甲基戊二酰辅酶A还原酶抑制剂(他汀类药物)在一级和二级预防中均明显降低了主要不良心脏事件[37]。影像学研究阐释了他汀药物治疗后斑块组成的变化。
Hattori等[38]连续用OCT、灰阶IVUS和集成后向散射血管内超声观察42例行PCI的冠心病患者的非目标斑块,在平均9个月的随访中,4mg匹伐他汀治疗的患者较对照组患者斑块体积和脂质体积减小,纤维帽厚度明显增加。
强化降脂治疗减小脂质斑块试验[39]使用IVUS和近红外光谱学观察87例行PCI的多支病变患者,分别经过7周强化他汀治疗(罗素伐他汀40 mg/日)和标准化治疗,强化他汀较标准化治疗最大脂质核心负荷减少了4 mm,而斑块形态在IVUS上未见明显的整体变化。
3.2 血管炎症的治疗非侵入性影像学尤其是18F-FDG-PET/ CT利于评估他汀类药物疗效和提供血管炎症的治疗策略。
Tawakol等[40]研究显示,动脉粥样硬化患者分别服用阿托伐他汀80 mg和10 mg,测量基线、4周后、12周后升胸主动脉的18F-FDG的靶本底比值。经过强化(80 mg)治疗在4周时靶本底比值有效降低。Vucic等[41]报道了肝脏X受体α激动剂(LXRα激动剂)R211945在兔动脉粥样硬化斑块的炎症和新血管形成的作用。使用LXRα激动剂治疗后,随着时间延长,平均斑块和18F-FDG-PET/CT的最大标准摄取率减少,提示炎症衰退。然而对照组使用阿托伐他汀治疗的斑块大小无明显变化,18F-FDG-PET/CT标准摄取率增高。
4 锁定高风险斑块的局部治疗
心肌梗死预防性血管成形术随机试验(PRAMI)[42]阳性结果的公布,使预防性PCI的作用受到质疑。在PRAMI试验中,在ST段抬高型心肌梗死患者的罪犯病变行PCI的同时,对全部狭窄大于管腔直径50%的非罪犯病变行额外的血管再形成术,预防性PCI使心脏源性死亡、非致死性心肌梗死或顽固性心绞痛显著降低。
PRAMI试验的结果引起争议。主要包括缺血终点事件在对照组是来源于未行血管再形成术的非罪犯斑块。同样,在PRAMI中斑块是根据造影结果定义的,而不知道它们的成分性质。然而,虽然PRAMI不可能改变临床常规,但让我们思考在心血管预防方面局部治疗的作用。
动脉粥样硬化斑块的影像学研究仍处于初期阶段,仍需要大量的深入研究、技术改良和标准化分析。大规模的前瞻性研究成果若要应用于临床,需要评估上述影像学形态在预测斑块风险方面的精确作用,需要评估全身系统治疗的效果和规范局部介入靶向治疗。通过这些成果,动脉粥样硬化管理方面才能保持平衡:既重视全身系统的治疗管理,又要适当根据个体化理解和治疗相关的局部病变。
[1] Naghavi M,Libby P,Falk E,et al. From vulnerable plaque to vulnerable patient: a call for new and risk assessment strategies: part I[J]. Circulation, 2003,108(14):1664-72.
[2] Ambrose JA,Tannenbaum MA,Alexopoulos D,et al. Angiographic progression of coronary artery disease and the development of myocardial infarction[J]. J Am Coll Cardiol,1988,12(1):56-62.
[3] Narula J,Nakano M,Virmani R,et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques[J]. J Am Coll Cardiol,2013,61(10):1041-51.
[4] Mancini GB,Hartigan PM,Bates ER,et al. Angiographic disease progression and residual risk of cardiovascular events while on optimal medical therapy: observations from the COURAGE trial[J]. Circ Cardiovasc Interv,2011,4(6):545-52.
[5] Stone GW,Maehara A,Lansky AJ,et al. A prospective naturalhistory study of coronary atherosclerosis[J]. N Engl J Med,2011,364(3):226-35.
[6] Puri R,Nicholls SJ,Ellis SG,et al. High-risk coronary theroma: the interplay between ischemia, plaque burden,and disease progression[J]. J Am Coll Cardiol,2014,63(12):1134-40.
[7] Ghattas A,Griffiths HR,Devitt A,et al. Monocytes in coronary artery disease and atherosclerosis: where are we now[J]? J Am Coll Cardiol,
2013,62(17):1541-5.
[8] Randolph GJ. Proliferating macrophages prevail in atherosclerosis[J]. Nat Med,2013,19(9):1094-5.
[9] Purushothaman KR,Purushothaman M,Levy AP,et al. Increased expression of oxidation- specific epitopes and apoptosis are associated with haptoglobin genotype: possible implications for plaque progression in human atherosclerosis[J]. J Am Coll Cardiol,2012, 60(2):112-9.
[10] Rader DJ,Tall AR. The not-so-simple HDL story: is it time to revise the HDL cholesterol hypothesis[J]? Nat Med,2012,18(9):1344-6.
[11] Hewing B,Moore KJ,Fisher EA. HDL and cardiovascular risk: time to call the plumber[J]? Circ Res,2012,111(9):1117-20.
[12] Schwartz GG,Olsson AG,Abt M,et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome[J]. N Engl J Med,2012,367 (22):2089-99.
[13] Voight BF,Peloso GM,Orho-Melander M,et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study[J]. Lancet,2012,380(9841):572-80.
[14] Mora S,Glynn RJ,Ridker PM. High-density lipoprotein cholesterol,size, particle number, and residual vascular risk after potent statin therapy[J]. Circulation,2013,128(11):1189-97.
[15] Riwanto M,Rohrer L,Roschitzki B,et al. Altered activation of endothelial anti-and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of highdensity lipoprotein-proteome remodeling[J]. Circulation,2013,127(8): 891-904.
[16] Baber U,Stone GW,Weisz G,et al. Coronary plaque composition,morphology, and outcomes in patients with and without chronic kidney disease presenting with acute coronary syndromes[J]. J Am Coll Cardiol Imaging,2012,5(3):S53-61.
[17] Marso SP,Mercado N,Maehara A,et al. Plaque composition and clinical outcomes in acute coronary syndrome patients with metabolic syndrome or diabetes[J]. J Am Coll Cardiol Imaging,2012,5(3):S42-52.
[18] Kataoka Y,Wolski K,Uno K,et al. Spotty calcification as a marker of accelerated progression of coronary atherosclerosis: insights from serial intravascular ultrasound[J]. J Am Coll Cardiol,2012,59(18):1592-7.
[19] Xu Y,Mintz GS,Tam A,et al. Prevalence, distribution, predictors,and outcomes of patients with calcified nodules in native coronary arteries: a 3-vessel intravascular ultrasound analysis from Providing Regional Observations to Study Predictors of Events in the Coronary Tree (PROSPECT)[J]. Circulation,2012,126(5):537-45.
[20] Calvert PA,Obaid DR,O’Sullivan M,et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) study[J]. JACC Cardiovasc Imaging,2011,4(8):894-901.
[21] Falk E,Wilensky RL. Prediction of coronary events by intravascular imaging[J]. J Am Coll Cardiol Imaging,2012,5(3):S38-41.
[22] Suh WM,Seto AH,Jang IK,et al. Intravascular detection of the vulnerable plaque[J]. Circ Cardiovasc Imaging,2011,4(2):169-78.
[23] Fleg JL,Stone GW,Fayad ZA,et al. Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions[J]. JACC Cardiovasc Imaging,2012,5(9):941-55.
[24] Tearney GJ,Regar E,Akasaka T,et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation[J]. J Am Coll Cardiol,2012,59(12): 1058-72.
[25] Kato K,Yonetsu T,Kim SJ,et al. Comparison of nonculprit coronary plaque characteristics between patients with and without diabetes: a 3-vessel optical coherence tomography study[J]. J Am Coll Cardiol Intv,2012,5(11):1150-8.
[26] Kato K,Yonetsu T,Kim SJ,et al. Nonculprit plaques in patients with acute coronary syndromes have more vulnerable features compared with those with non-acute coronary syndromes: a 3-vessel optical coherence tomography study[J]. Circ Cardiovasc Imaging,2012,5(4): 433-40.
[27] Uemura S,Ishigami K,Soeda T,et al. Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques[J]. Eur Heart J,2012,33(1):78-85.
[28] Jia H,Abtahian F,Aguirre AD,et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography[J]. J Am Coll Cardiol, 2013,62(19):1748-58.
[29] Obaid DR,Calvert PA,Gopalan D,et al. Atherosclerotic plaque composition and classification identified by coronary computed tomography:assessment of computed tomography-generated plaque maps compared with virtual histology intravascular ultrasound and histology[J]. Circ Cardiovasc Imaging,2013,6(5):655-64.
[30] Maurovich-Horvat P,Schlett CL,Alkadhi H,et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography[J]. JACC Cardiovasc Imaging,2012,5(12):1243-52.
[31] Otsuka K,Fukuda S,Tanaka A,et al. Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome[J]. J Am Coll Cardiol Imaging,2013,6(4):448-57.
[32] Karolyi M,Seifarth H,Liew G,et al. Classification of coronary atherosclerotic plaques ex vivo with T1, T2, and ultrashort echo time CMR[J]. JACC Cardiovasc Imaging,2013,6(4):466-74.
[33] Osborn EA,Jaffer FA. The year in molecular imaging[J]. J Am Coll Cardiol Imaging,2012,5(3):317-28.
[34] Quillard T,Libby P. Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development[J]. Circ Res,2012,111(2):231-44.
[35] Sanz J,Fayad ZA. Imaging of atherosclerotic cardiovascular disease[J]. Nature,2008,451:953-7.
[36] Dweck MR,Chow MW,Joshi NV,et al. Coronary arterial 18Fsodium fluoride uptake: a novel marker of plaque biology[J]. J Am Coll Cardiol, 2012,59(17):1539-48.
[37] Ridker PM,Danielson E,Fonseca FA,et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein[J]. N Engl J Med,2008,359(21):2195-207.
[38] Hattori K,Ozaki Y,Ismail TF,et al. Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatter-IVUS[J]. J Am Coll Cardiol Imaging,2012,5(2):169-77.
[39] Kini AS,Baber U,Kovacic JC,et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (Reduction in YEllow Plaque by Aggressive Lipid LOWering Therapy)[J]. J Am Coll Cardiol,2013,62(1):21-9.
[40] Tawakol A,Fayad ZA,Mogg R,et al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose -positron emission tomography/ computed tomography feasibility study[J]. J Am Coll Cardiol,2013,62 (10):909-17.
[41] Vucic E,Calcagno C,Dickson SD,et al. Regression of inflammation in atherosclerosis by the LXR agonist R211945: a noninvasive assessment and comparison with atorvastatin[J]. JACC Cardiovasc Imaging,2012,5(8):819-28.
[42] Wald DS,Morris JK,Wald NJ,et al. Randomized trial of preventive angioplasty in myocardial infarction[J]. N Engl J Med,2013,369:1115-23.
R543.5
A
1674-4055(2015)05-0713-03
2015-05-16)
(责任编辑:姚雪莉)
150000 哈尔滨,哈尔滨医科大学附属第二医院心内科
于波,E-mail:478503042@qq.com
10.3969/j.issn.1674-4055.2015.05.44