APP下载

是巧合还是规律?

2015-01-15陈心红

中学生理科应试 2014年12期
关键词:变化率苏教版导数

陈心红

笔者在讲解苏教版选修2-2第一章《导数及其应用》1.1.1《平均变化率》一节例3时,发现一个有意思的现象:在做书本练习第4题时,发现该题的函数和例3的一样,只是区间复杂了一些,所得的结果是一致的.笔者不禁想这是巧合,还是有什么规律.现将这两题呈现如下:

题1(例3)已知函数f(x)=x2,分别计算函数f(x)在区间[1,3],[1,2],[1,1.1],[1,1.001]上的平均变化率.

笔者在讲解苏教版选修2-2第一章《导数及其应用》1.1.1《平均变化率》一节例3时,发现一个有意思的现象:在做书本练习第4题时,发现该题的函数和例3的一样,只是区间复杂了一些,所得的结果是一致的.笔者不禁想这是巧合,还是有什么规律.现将这两题呈现如下:

题1(例3)已知函数f(x)=x2,分别计算函数f(x)在区间[1,3],[1,2],[1,1.1],[1,1.001]上的平均变化率.

笔者在讲解苏教版选修2-2第一章《导数及其应用》1.1.1《平均变化率》一节例3时,发现一个有意思的现象:在做书本练习第4题时,发现该题的函数和例3的一样,只是区间复杂了一些,所得的结果是一致的.笔者不禁想这是巧合,还是有什么规律.现将这两题呈现如下:

题1(例3)已知函数f(x)=x2,分别计算函数f(x)在区间[1,3],[1,2],[1,1.1],[1,1.001]上的平均变化率.

猜你喜欢

变化率苏教版导数
苏教版六下《比例的基本性质》教学设计
例谈中考题中的变化率问题
关于导数解法
基于变化率的子空间聚类算法
导数在经济学中“边际分析”的应用
精编课本题改编练习
导数在函数中的应用
导数在圆锥曲线中的应用
护岸框架减速效果研究
函数与导数