由一个反例引发的对数学命题教学的思考
2015-01-10于从贤
于从贤
由一个反例引发的对数学命题教学的思考
于从贤
在讲“充要条件”时我遇到这样一道题目:已知平面内任一点O满足,则“”是“点P在直线AB上”的( )
A.必要不充分条件
B.充分不必要条件
C.充要条件
D.既不充分也不必要条件
若O,A,B,P四点共线,如图:
难道点O不能在直线AB上吗?于是,我进行了一次推导:
整个推导过程好像确实跟点O是否在直线AB上没关系?那到底是哪里出了问题?
一道看似简单而熟悉的题目,因为学生的一个反例,促使我重新对平面向量基本定理和共线定理进行了深入的探究。这次探究也引起了我的思考:定理是数学中重要的命题,命题(公式、定理)教学是数学课堂教学中的重要基本课型,如何才能让我们的命题教学达到更好的效果呢?
纵观命题教学,我们可以发现,教师对命题教学的确很重视,但这种重视主要是在命题的结论和应用上,教学往往是“公式(或定理)加例题”,“一背二套三运用”,而对命题的形成过程、内涵及推导过程中蕴含的数学思想和方法等不够重视。这种重结论轻条件,重结果轻过程、轻方法的总结,使得学生对公式、定理的学习只是停留在表面上,只会机械地套公式、用定理,极容易出现错误,更不会灵活运用。久而久之,学生对公式、定理不清,数学运用能力和思维能力下降。下面,我结合自身的教学实践及教学中的经典案例,谈谈命题教学中教师应该重视的几个方面。
一、命题教学应重视命题的形成过程
数学中的公式、定理本身就是一道经典的数学题目,有必要对其形成进行推导和论证。如果只是重视公式、定理的解题运用,而忽视其形成过程中的推导和证明,从某种程度来说是舍本逐末。在教学中,教师应通过各种有效的教学手段,揭示公式、定理的来龙去脉,展示公式、定理的推导过程,这不仅有助于学生清楚公式、定理的形成过程,而且还能帮助学生记清公式、定理,灵活运用公式、定理解题。
案例1:设当x=兹时,函数取得最小值,则
这道题学生都很熟悉,一般都知道函数最小值为-5,但问题是取最小值时角的余弦值是多少,很多学生都不会求。究其原因,主要是学生对公式为辅助角)的形成过程不清楚。很多老师在将形如的三角函数式化归为一个角的某三角函数教学时,大都是直接告诉学生提取,化为,然后叫学生记住,会套用就行了。但为什么要提取,怎样化为,学生不清楚,所以遇到这道题时,很多学生不会做。如果在教学时,教师让学生观察的结构特点,对比两角和与差的正、余弦公式,可知只要将a,b的位置变成一个角的正、余弦值即可,但的值可能不等于1,为了解决这一问题,可设,此时,因此, 其中,。对这个公式的形成过程学生清楚了,解这道题就比较容易了,,其中,,当时,函数f(x)取得最小值,即有,因此。
通过案例1,我们可以发现,仅仅记住公式在解题中还是远远不够的。让学生记住某个公式、某个定理,并非数学命题教学的最终目的,而掌握公式、定理的形成过程,也是数学命题教学的目的之一。
二、命题教学应重视命题的适用条件
数学中的公式、定理是由条件和结论组成的命题,结论是在一定条件下才能成立,运用公式、定理,必须要有使公式、定理的结论成立的条件。命题教学中,教师要让学生分清公式、定理的条件和结论,弄清公式、定理的条件和结论间的关系,强调公式、定理适用的范围和成立的条件。
案例2.已知各项为正数的等比数列{an}满足,若存在两项am,an,使得,则的最小值为______
同一道题,不同的答案,哪一个对呢?事实上,两个答案都是错的。第一种解题思路是对的,但在运用基本不等式求最小值时,取等号的条件“”是取不到的,原因是m,n是正整数,所以答案是错误的;第二种学生的答案也是错的,两次运用基本不等式,既没注意每次取等号的条件,也没注意两次取等号的条件“m=n”与“4m=n”不能同时取得。这两种解法在运用基本不等式时,都是因为没有考虑取等号的条件而出错。
为什么会出现案例2这种错误呢?主要原因是在运用公式、定理解题时,条件意识不强,没注意结论成立的充分性。比如,教师在讲解例题时,平时因为题目一般给了可以运用公式、定理的条件,在板书时常会出现不写条件,直接运用写结论这种解题不规范错误,这样就给学生造成一种条件可有可无的错觉,而当题目没有给公式、定理适用的条件时,学生机械地套公式、定理解题,就很容易出错。因此,教师在公式、定理教学时,要重视公式、定理的适用条件,做好运用公式、定理解题示范,培养学生运用公式、定理解题时要考虑结论成立时的条件的好习惯。
三、命题教学应重视命题的内、外在双重特征
数学中的公式、定理揭示了数学知识的基本规律,具有一定的形式符号化的抽象性和概括性的特征,从形式上看都比较简洁,但内涵丰富。教师在命题教学中,既要从形式上分析公式、定理的特征,还要挖掘公式、定理中隐藏的内在特征。
案例3:已知等差数列{an}与{bn}的前n项和分别为Sn和Tn,且,求的值。
在案例3中,学生对等差数列前n项和公式的形式特征不清楚,不知道等差数列前n项和实质上是一个关于n的二次函数,而选择了错误的求解方法。在命题教学中,教师要和学生一起分析公式、定理形式特征和内在特征,让学生对公式、定理有个清楚的认识和理解,这样学生才会正确地运用公式、定理。
四、命题教学应重视命题蕴含的数学思想和方法
数学中的命题是数学基础知识的核心内容,不仅是数学学习和运用的基础,也是数学推理和论证的重要依据,其自身的推理和论证也是提炼数学思想和方法,培养学生思维能力的重要载体。在命题教学中,教师在推导公式、定理后,没有和学生一起分析归纳推导、论证过程中运用的数学思想和方法,导致学生不会运用公式、定理推导过程所蕴含的数学思想和方法解题,数学学习能力也就难以提高。“授人以鱼,不如授人以渔”,在命题教学中,教师不仅要重视公式、定理的推导、论证过程,还要分析和归纳推导、论证过程中运用的数学思想和解题方法。
案例4:已知函数,则的值为_____.(答案:-8058)
很多学生在面对这道题时,不知如何下手。事实上,观察该求和式子特征,可以发现首末两项等距离的两项之和等于首末两项之和,这正是等差数列前n项和中具备的特征,因此,可以运用等差数列前n项和公式推导过程中运用的倒序相加法来解该题。事实上,很多重要的数学思想、数学方法,在教材中没有专门表述,但它们却大量地隐含于公式、定理等表层知识的背后,贯穿于数学学习的全过程。因此,教师在教学过程中,应善于化隐为显,精心挖掘,适时提炼,恰如其分地渗透相关的数学思想和方法。
总之,数学命题教学中,教师要重视命题的形成过程,强调命题的适用条件和内、外在双重特征,重视归纳命题形成过程中蕴含的数学思想和方法,把学过的命题系统化,形成结构紧密的知识体系。
1.李果明.中学数学教学建模[M].南宁:广西教育出版社,2003.
2.麦曦.中学数学课型与教学模式研究 [M].广州:新世纪出版社,2002.
(作者单位:广州市培正中学)
责任编辑 黄佳锐