APP下载

利用RNA干扰技术研究长牡蛎TLR2—2基因对MyD88—2基因表达的影响

2015-01-06李颖翔杜以帅张琳琳李莉张国范

湖北农业科学 2014年12期
关键词:双壳牡蛎孵育

李颖翔+杜以帅+张琳琳+李莉+张国范

摘要:为研究长牡蛎(Crassostrea gigas)免疫基因TLR2-2对MyD88-2基因表达的调控作用,将体外合成的dsRNA注射进入成体长牡蛎体内,72 h后检测TLR2-2基因和MyD88-2基因的表达量。结果表明,成功地对TLR2-2基因和MyD88-2基因进行了干扰,而在TLR2-2基因被干扰后,MyD88-2基因的表达量显著下降,但在MyD88基因被干扰的长牡蛎中TLR2-2基因表达量没有明显变化。

关键词:RNA干扰;长牡蛎(Crassostrea gigas);TLR2-2基因;MyD88-2基因

中图分类号:Q786        文献标识码:A        文章编号:0349-8114(2014)12-2860-04

Effects of Inhibition of TLR2-2 Gene by RNA Interference on MyD88-2 Gene in Crassostrea gigas

LI Ying-xiang1,2,DU Yi-shuai1,ZHANG Lin-lin1,LI Li1,ZHANG Guo-fan1

(1.Institute of Oceanology,Chinese Academy of Sciences, Qingdao 266071,Shandong,China;

2.University of Chinese Academy of Sciences,Beijing 100039,China)

Abstract:Double strands RNA synthesized in vitro transcription was injected to adult Pacific oysters(Crassostrea gigas), to study the interaction between TLR2-2 and its potential downstream MyD88 gene. The expression of TLR2-2 and MyD88-2 analyzed by qPCR reduced 72 h after injection. Moreover, in oysters where expression of TLR2-2 was inhibited by dsRNA, MyD88-2 was also found down-regulated, while the expression level of TLR2-2 in oysters where MyD88-2 was suppressed was not significant different compared with that of control group.

Key words: RNA interference; Crassostrea gigas; TLR2-2 gene; MyD88-2 gene

由于技术手段的限制,经典的基因功能研究方法(如诱变)在软体动物中暂时无法得到应用,而RNA干扰技术则成为了软体动物基因沉默的反向遗传学研究工具[1]。利用双链RNA(double-stranded RNA,dsRNA)诱导转录后的基因沉默也是一种应用非常普遍的技术手段。在细胞中,dsRNA可以被Dicer酶切割成约21~23 bp的双链RNA片段,即siRNA(small interference RNA),siRNA整合到沉默复合体(RNA-induced silencing complex, RISC),引导复合体中的酶切割目标基因的mRNA,从而达到使目标基因沉默[2-5];在脊椎动物中,dsRNA已经被证明可以特异性地抑制目标基因的表达;而在软体动物中,尤其是双壳贝类,虽然已经有研究在日本珍珠贝、栉孔扇贝等物种中利用dsRNA成功实现目标基因沉默[6-8],但整体上,在双壳贝类中RNA干扰技术的应用还远远滞后于脊椎动物。

Toll-like receptor(TLR)家族参与的信号通路是天然免疫系统中非常重要的通路,其中TLR家族能够作为模式识别受体(Pattern recognition receptor,PRRs)参与入侵微生物或病原体的识别并激活免疫反应。研究表明,MyD88(Myeloid differentiation factor 88)可以通过其TIR结构域参与到该信号通路来阐明TLR信号通路。本研究通过在长牡蛎中对TLR2-2基因和MyD88-2基因进行dsRNA干扰,研究了长牡蛎天然免疫中TLR2-2基因与MyD88-2基因的上下游调控关系,为长牡蛎天然免疫的深入研究提供了参考,也为RNA干扰技术在双壳贝类的应用提供了借鉴。

1   材料与方法

1.1  材料

1.1.1  试验材料  长牡蛎取自山东省青岛市胶南海域,选择大小一致、健康的个体,试验前于海水培养箱中暂养1周,每天换水。

1.1.2  主要试剂  Trizol购自Invitrogen公司;PrimeScript RT Reagent Kit With gDNA Eraser和SYBR Premix Ex Taq酶购自宝生物工程(大连)有限公司;氨苄青霉素、卡那霉素、LB培养基、胶回收试剂盒和质粒提取试剂盒购自生工生物工程(上海)股份有限公司;Revert Aid First Strand cDNA Synthesis Kit、Transcript Aid T7 High Yield Transcription Kit购自Fermentas公司,其他试剂购自国药集团化学试剂有限公司。endprint

1.1.3  主要仪器   7500 Fast型荧光定量PCR仪(Applied Biosystems公司),高速冷冻离心机、Nanodrop 2000超微量分光光度计(ThermoFisher公司),普通PCR仪(BIOER公司),冰箱、超低温冰箱、微量可调移液器、恒温摇床、高压锅、制冰机、水浴锅和超净工作台等。

1.2  方法

1.2.1  引物的设计  PCR所用的引物根据GenBank中长牡蛎TLR2-2基因(OYG_10012212)和MyD88-2基因(Accession No. KC155822.1)序列设计,EF-1α(Elongation Factor-1α)基因为内参基因,具体序列见表1。

1.2.2  dsRNA的制备   剖取大小一致、健康的长牡蛎鳃组织,以Trizol法提取总RNA,反转录后得到cDNA。以cDNA为模版,用5′端带T7启动子的引物进行扩增,PCR扩增片段连接pMD 19-T载体并转化大肠杆菌DH5α。挑取菌落进行PCR,选取阳性克隆对应的剩余菌液扩大培养并测序。根据测序结果,提取的质粒即为双链RNA体外转录的模版。体外转录模版,利用T7体外转录试剂盒,按照试剂盒提供步骤进行操作,即可获取dsRNA。

将获得的dsRNA以琼脂糖凝胶电泳检测其纯度;用Nanodrop 2 000超微量分光光度计测量浓度和RNA纯度;同时用RNase A和DNase I两种酶检测产物的质量。用RNase A和DNase I进行检测时,按照试剂说明书,将转录产物分别与RNase A以1∶1的比例,与DNase I以1∶4的比例一起在37 ℃孵育30 min,孵育后电泳检测。

1.2.3  dsRNA的注射及取样   将体外转录合成的dsRNA溶解于灭菌的PBS缓冲液中,使其终浓度为1 μg/μL。从暂养1周后的长牡蛎中选取健康个体48只,随机分为4组,分别标记为空白对照组、PBS对照组、TLR干扰组和MyD88干扰组,每组单独置于一个养殖桶中。TLR干扰组和MyD88干扰组每只分别注射100 μL其对应的dsRNA,PBS对照组每只注射100 μL的PBS缓冲液,空白对照组不做处理。注射后72 h进行血细胞样品的取样,提取总RNA,用于检测目的基因表达量。

1.2.4  目的基因表达量的检测   基因表达量的检测通过实时荧光定量PCR进行。以Trizol法提取总RNA,以Nanodrop 2000超微量分光光度计和琼脂糖凝胶电泳检测RNA的浓度和纯度。反转录合成cDNA,以cDNA为模版,进行实时荧光定量PCR反应。反应体系为20 μL,PCR扩增程序为95 ℃预变性30 s;95 ℃变性5 s,60 ℃退火30 s,40个循环。以Elongation Factor-1α(EF-1α)基因为内参基因,数据分析采用2-ΔΔCt法。

2   结果与分析

2.1   dsRNA的制备与检测

以Nanodrop 2000超微量分光光度计检测合成的dsRNA的纯度,发现A260 nm/280 nm为1.9,产量为120 μg/个转录反应(20 μL)。同时琼脂糖凝胶进行电泳检测发现dsRNA的条带单一,且片段大小与模版cDNA大小相符(图1、图2)。对于合成的dsRNA的检测,主要采用了RNase A和DNase I两种酶进行。将转录产物与RNase A以1∶1的比例在37 ℃孵育30 min,电泳检测发现产物完全降解,而将转录产物与DNase I以1∶4的比例在37 ℃孵育30 min,则发现产物未被降解(图3)。检测结果说明转录产物是RNA,而不是DNA。

2.2  dsRNA干扰的效果检测

dsRNA注射72 h后,提取血细胞检测目的基因相对表达量(相对内参基因EF-1α的表达量)。与空白对照组、PBS对照组相比,TLR组(图4A)和MyD88 组(图4B)注射的dsRNA均有效地降低了目的基因的相对表达量,其中TLR组TLR2-2基因表达量较PBS组下降了76.7%,而MyD88组MyD88-2基因相对表达量也是较PBS组下降了74.3%,而PBS组与空白对照组中,两个目的基因的相对表达量没有统计学差异。

2.3   TLR2-2基因干扰后对下游MyD88-2基因影响的检测

由图5可以看出,与PBS对照组相比,TLR干扰组中MyD88-2基因的相对表达量大幅下降;与PBS对照组相比,MyD88干扰组中TLR2-2基因的相对表达量差异不大。

3  小结与讨论

RNAi作为反向遗传学的工具已经成为研究基因功能的有效手段。近年来,这项技术在无脊椎动物的研究中也开始得到了越来越广泛的应用。但在长牡蛎等双壳贝类中相关的技术较脊椎动物还是非常不成熟的。研究认为,dsRNA处理后靶标mRNA水平下降70%以上,才可以认为干扰有效[15]。虽然也有其他研究质疑这一标准过于苛刻,认为mRNA表达量不必下降到这个水平才可引起足够的蛋白表达量变化和表型差异[16],但即使按照70%的严格标准,本研究干扰效果也可以被认为是有效的。

目前,对长牡蛎中天然免疫系统的研究还是非常少,贝类和无脊椎动物缺少特异性的免疫反应和免疫记忆,所以完全依赖细胞和体液介导的天然免疫来进行病原防御。本研究初步探究了长牡蛎中TLR2-2基因沉默后对MyD88-2基因的影响,为其调控关系的确定提供了研究支持,对于明确TLR和MyD88在天然免疫系统中的作用提供了帮助。

参考文献:endprint

[1] ELBASHIR S M, HARBORTH J, LENDECKEL W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Letters to Nature,2001,411:494-498.

[2] RAND T A, PETERSEN S, DU F, et al. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation[J]. Cell,2005,123(4):621-629.

[3] BERNSTEIN E, CAUDY A A, HAMMOND S M, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Letters to Nature, 2001,409:363-366.

[4] HAMMOND S M, BERNSTEIN E, BEACH D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells [J]. Letters to Nature, 2000,404:293-296.

[5] HAMMOND S M, BOETTCHER S, CAUDY A A, et al. Argonaute2, a link between genetic and biochemical analyses of RNAi[J].Science,2001, 293:1146-1150.

[6] SUZUKI M, SARUWATARI K, KOGURE T, et al. An acidic matrix protein, Pif, is a key macromolecule for nacre formation [J]. Science magaizing,2009, 325:1388-1390.

[7] FANG D, XU G, HU Y, et al. Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata [J]. PLoS One,2011,6(7):e21860.

[8] WANG M, YANG J, ZHOU Z, et al. A primitive Toll-like receptor signaling pathway in mollusk Zhikong scallop Chlamys farrer [J]. Dev Comp Immunol, 2011, 35(4): 511-520.

[9] SOPHIE J, RUDI B. A universal role for MyD88 in TLR/IL-1R-mediated signaling [J]. Trends Biochem Sci, 2002, 27(9): 474-482.

[10] SUBHRA K B, VINAY T. Myeloid differentiation factor 88-independent Toll-like receptor pathway: Sustaining inflammation or promoting tolerance[J]. Inte J Biochem Cell Biology, 2007, 39(9): 1582-1592.

[11] CUI L Y, PENG K. Molecular cloning and expression of MyD88 in large yellow croaker Pseudosciaena crocea[J]. Fish & Shellfish Immunol, 2009, 26(2): 249-255.

[12] HIMANSHU K, TARO K, SHIZUO A. Toll-like receptors and innate immunity[J]. Biochem Bioph Res Co, 2009, 388(4): 621-625.

[13] HUVET A, HERPIN A, DEGREMONT L, et al. The identification of genes from the oyster Crassostrea gigas that are differentially expressed in progeny exhibiting opposed susceptibility to summer mortality[J]. Gene, 2004, 343(1):211-220.

[14] ESCOUBAS J M, BRIANT L, MONTAGNANI C, et al. Oyster IKK-like protein shares structural and functional properties with its mammalian homologues[J]. FEBS Lett, 1999, 453(3):293-298.

[15] JIANG Y, LOKER E S, ZHANG S M. In vivo and in vitro knockdown of FREP2 gene expression in the snail Biomphalaria glabrata using RNA interference[J]. Dev Comp Immunol, 2006, 30(10):855–866.

[16] FABIOUX C, CORPOREAU C, QUILLIEN V, et al. In vivo RNA interference in oyster-vasa silencing inhibits germ cell development [J]. FEBS J, 2009, 276(9):2566-2573.endprint

[1] ELBASHIR S M, HARBORTH J, LENDECKEL W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Letters to Nature,2001,411:494-498.

[2] RAND T A, PETERSEN S, DU F, et al. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation[J]. Cell,2005,123(4):621-629.

[3] BERNSTEIN E, CAUDY A A, HAMMOND S M, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Letters to Nature, 2001,409:363-366.

[4] HAMMOND S M, BERNSTEIN E, BEACH D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells [J]. Letters to Nature, 2000,404:293-296.

[5] HAMMOND S M, BOETTCHER S, CAUDY A A, et al. Argonaute2, a link between genetic and biochemical analyses of RNAi[J].Science,2001, 293:1146-1150.

[6] SUZUKI M, SARUWATARI K, KOGURE T, et al. An acidic matrix protein, Pif, is a key macromolecule for nacre formation [J]. Science magaizing,2009, 325:1388-1390.

[7] FANG D, XU G, HU Y, et al. Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata [J]. PLoS One,2011,6(7):e21860.

[8] WANG M, YANG J, ZHOU Z, et al. A primitive Toll-like receptor signaling pathway in mollusk Zhikong scallop Chlamys farrer [J]. Dev Comp Immunol, 2011, 35(4): 511-520.

[9] SOPHIE J, RUDI B. A universal role for MyD88 in TLR/IL-1R-mediated signaling [J]. Trends Biochem Sci, 2002, 27(9): 474-482.

[10] SUBHRA K B, VINAY T. Myeloid differentiation factor 88-independent Toll-like receptor pathway: Sustaining inflammation or promoting tolerance[J]. Inte J Biochem Cell Biology, 2007, 39(9): 1582-1592.

[11] CUI L Y, PENG K. Molecular cloning and expression of MyD88 in large yellow croaker Pseudosciaena crocea[J]. Fish & Shellfish Immunol, 2009, 26(2): 249-255.

[12] HIMANSHU K, TARO K, SHIZUO A. Toll-like receptors and innate immunity[J]. Biochem Bioph Res Co, 2009, 388(4): 621-625.

[13] HUVET A, HERPIN A, DEGREMONT L, et al. The identification of genes from the oyster Crassostrea gigas that are differentially expressed in progeny exhibiting opposed susceptibility to summer mortality[J]. Gene, 2004, 343(1):211-220.

[14] ESCOUBAS J M, BRIANT L, MONTAGNANI C, et al. Oyster IKK-like protein shares structural and functional properties with its mammalian homologues[J]. FEBS Lett, 1999, 453(3):293-298.

[15] JIANG Y, LOKER E S, ZHANG S M. In vivo and in vitro knockdown of FREP2 gene expression in the snail Biomphalaria glabrata using RNA interference[J]. Dev Comp Immunol, 2006, 30(10):855–866.

[16] FABIOUX C, CORPOREAU C, QUILLIEN V, et al. In vivo RNA interference in oyster-vasa silencing inhibits germ cell development [J]. FEBS J, 2009, 276(9):2566-2573.endprint

[1] ELBASHIR S M, HARBORTH J, LENDECKEL W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Letters to Nature,2001,411:494-498.

[2] RAND T A, PETERSEN S, DU F, et al. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation[J]. Cell,2005,123(4):621-629.

[3] BERNSTEIN E, CAUDY A A, HAMMOND S M, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Letters to Nature, 2001,409:363-366.

[4] HAMMOND S M, BERNSTEIN E, BEACH D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells [J]. Letters to Nature, 2000,404:293-296.

[5] HAMMOND S M, BOETTCHER S, CAUDY A A, et al. Argonaute2, a link between genetic and biochemical analyses of RNAi[J].Science,2001, 293:1146-1150.

[6] SUZUKI M, SARUWATARI K, KOGURE T, et al. An acidic matrix protein, Pif, is a key macromolecule for nacre formation [J]. Science magaizing,2009, 325:1388-1390.

[7] FANG D, XU G, HU Y, et al. Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata [J]. PLoS One,2011,6(7):e21860.

[8] WANG M, YANG J, ZHOU Z, et al. A primitive Toll-like receptor signaling pathway in mollusk Zhikong scallop Chlamys farrer [J]. Dev Comp Immunol, 2011, 35(4): 511-520.

[9] SOPHIE J, RUDI B. A universal role for MyD88 in TLR/IL-1R-mediated signaling [J]. Trends Biochem Sci, 2002, 27(9): 474-482.

[10] SUBHRA K B, VINAY T. Myeloid differentiation factor 88-independent Toll-like receptor pathway: Sustaining inflammation or promoting tolerance[J]. Inte J Biochem Cell Biology, 2007, 39(9): 1582-1592.

[11] CUI L Y, PENG K. Molecular cloning and expression of MyD88 in large yellow croaker Pseudosciaena crocea[J]. Fish & Shellfish Immunol, 2009, 26(2): 249-255.

[12] HIMANSHU K, TARO K, SHIZUO A. Toll-like receptors and innate immunity[J]. Biochem Bioph Res Co, 2009, 388(4): 621-625.

[13] HUVET A, HERPIN A, DEGREMONT L, et al. The identification of genes from the oyster Crassostrea gigas that are differentially expressed in progeny exhibiting opposed susceptibility to summer mortality[J]. Gene, 2004, 343(1):211-220.

[14] ESCOUBAS J M, BRIANT L, MONTAGNANI C, et al. Oyster IKK-like protein shares structural and functional properties with its mammalian homologues[J]. FEBS Lett, 1999, 453(3):293-298.

[15] JIANG Y, LOKER E S, ZHANG S M. In vivo and in vitro knockdown of FREP2 gene expression in the snail Biomphalaria glabrata using RNA interference[J]. Dev Comp Immunol, 2006, 30(10):855–866.

[16] FABIOUX C, CORPOREAU C, QUILLIEN V, et al. In vivo RNA interference in oyster-vasa silencing inhibits germ cell development [J]. FEBS J, 2009, 276(9):2566-2573.endprint

猜你喜欢

双壳牡蛎孵育
告别自汗用牡蛎,四季都轻松
深部软岩巷道“双壳”支护技术研究与应用
三物黄芩汤组分(群)配伍在大鼠肝微粒体孵育模型中的相互作用
大鼠肝微粒体孵育体系中2种成分的测定及其代谢
30万吨级超大原油船双壳优化设计研究
精子与慢病毒孵育制备转基因猪的分子检测及遗传分析
昙石山文化的牡蛎器
双壳微纳胶囊的制备及热湿性能的试验研究
6万吨级新型半敞口散货船的开发设计
牡蛎