火力发电厂烟气脱硫吸收塔结构动力特性分析
2014-12-25唐涛
唐涛
【摘 要】烟气脱硫是降低燃煤发电厂煤燃烧所产生主要污染物二氧化硫的重要措施,吸收塔是烟气脱硫系统中的主体部分。火力发电厂烟气脱硫吸收塔动力的特性分析有了重要的研究价值。
【关键词】环境污染 烟气脱硫 吸收塔 结构动力
中图分类号:TV文献标识码: A
二氧化硫是地球大气中的主要污染物之一,是衡量大气是否遭到污染的重要指标。世界上有很多城市发生过二氧化硫危害的严重事件,二氧化硫对人类的健康、动植物生长、工农业生产甚至生态系统都会造成很大危害。目前,中国已成为全球最大的二氧化硫排放国之一,据国家环境保护部公布的数据显示,2011 年1月~ 6 月,我国二氧化硫排放总量1114.1万吨,其中绝大多为工业排放。因此,控制工业二氧化硫排放已成为社会和经济可持续发展的迫切需求,势在必行。我国《大气污染防治法》第三十条也规定“新建、扩建排放二氧化硫的火电厂和其他大中型企业,超过规定的污染物排放标准或者总量控制指标的,必须建设配套脱硫、除尘装置或者采取其他控制二氧化硫排放、除尘的措施。”因此,找到一条适合企业的科学合理的烟气脱硫方式就显得至关重要。
1.烟气脱硫吸收的技术研究成果
近几年采用的主要方法是洗煤技术。煤炭洗选目前仅能除去煤炭中的部分无机硫,对于煤炭中的有机硫尚无经济可行的去除技术。在高硫煤产区,煤中有机硫成分都较高,因此很难用煤炭洗选的方法达到有效控制二氧化硫排放的目的。特别是,煤炭市场供应紧张,用煤量大的企业购入煤炭已属不易,难以选择煤种,顾及煤炭质量,导致用煤质量下降,煤质含硫量增加,客观上增加了废气排放中的二氧化硫排放量。燃烧中脱硫是指燃烧与脱硫同时进行。目前比较成熟的有烟气循环流化床脱硫技术和炉内喷钙技术。烟气循环流化床脱硫技术在国外目前应用在10万千瓦~20万千瓦等级机组,其占地少,投资较小,适合于老机组烟气脱硫。炉内喷钙技术在芬兰、美国、加拿大、法国等国家得到应用,采用这一脱硫技术的最大单机容量已达30万千瓦,其应用需要更换锅炉,否则难以用于解决现有电厂的环保问题。
2.几种主要脱硫工艺简介
2.1石灰石一石膏湿法脱硫工艺
目前,世界上应用最广泛、技术最为成熟的脱除技术是石灰石—石膏湿法脱硫工艺,它能占到FGD容量的70%左右。这种技术以石灰石为脱硫吸收剂,向吸收塔内喷入吸收剂浆液,让这些物质和烟气充分接触、混合,随之对烟气进行净化、洗涤,使烟气中的SO2与浆液中的碳酸钙以及氧化空气发生化学反应,最后生成石膏,从而达到减少SO2排放的目的,是控制酸雨和SO2最有效的方法。
(1)脱硫效率高,技术成熟近年来,石灰石—石膏湿法脱硫技术发展迅速,脱硫效率能够达到95%以上,经过处理后SO2浓度和烟气含尘量都会大幅减少。从目前运行实际情况看,很多大型电厂普遍采用石灰石—石膏湿法脱硫工艺,效果较好,有利于本地区烟气污染物总量控制,改善周边环境。此项技术成熟,运行经验多,运行稳定,易于调整,能够取得很好的经济效益。
(2)投资高,占地面积大石灰石—石膏湿法脱硫工艺需要配置石灰石粉碎、磨制系统,石膏脱水系统、废水处理系统等,因此占地面积比较大,况且设备多,一次性建设投资就会比较大。
(3)吸收剂资源丰富,价格便宜我国有丰富的石灰石资源,并且品质也较好,价格便宜,碳酸钙含量在90%以上,优者可达95%以上,钙利用率较高。
(4)副产物的综合利用石灰石—石膏湿法脱硫工艺的脱硫副产物为二水石膏。石膏是用于生产建材产品和水泥缓凝剂,目前我国房地产市场非常大,石膏的利用率也很高,且消耗大,因此脱硫副产品基本可以达到综合利用。这样不仅可以增加电厂的经济效益,还会降低企业的运行成本,减少二次污染。
2.2炉内喷钙加尾部增湿活化脱硫(LIFAC)
LIFAC技术是在炉内喷钙脱硫技术的基础上在锅炉尾部增设了增湿活化塔,以提高脱硫效率。石灰石粉作为吸收剂,由气力喷入炉膛950~1150℃的温度区,使石灰石受热分解为CaO和CO2,CaO再与烟气中的SO2反应生成CaSO3。此方法的脱硫效率较低,约为25%~35%。在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的CaO接触生成Ca(OH)2随后与烟气中的SO2反应,可以将系统脱硫效率提高到75%。增湿水由于烟气加热而迅速蒸发,未反应的吸收剂、反应产物被干燥,一部分从增湿活化器底部分离出来,其余的随烟气排出,被除尘器收集下来。为了提高吸收剂的利用率,部分飞灰返回增湿活化反应器入口实现再循环。
该技术具有以下特点:系统简单、占地面积少,投资及运行费用低,特别是可以分步实施,适应环保标准逐渐提高的要求,特别适用于中小机组改造,但可能会引起原锅炉结焦及受热面磨损;主要适用于燃煤含硫量低于2.0%的中、低硫煤种;脱硫效率在60%~85%之间,钙的利用率低,一般Ca/S为2.0~3.0;脱硫副产品呈干粉状,无废水排放,副产品的利用有一定困难,锅炉效率下降约0.3%。
2.3循环流化床干法
烟气循环流化床脱硫技术(CFB)是20世纪80年代后期发展起来的一种新的烟气脱硫技术,该技术是利用循环流化床强烈的传热和传质特性,在吸收塔内加入消石灰等脱硫剂,用高速烟气使脱硫剂流态化从而与烟气强烈混合接触,烟气中的酸性污染物与脱硫剂中和、固化,从而达到净化烟气的目的。增湿(或制浆)后的吸收剂注入到吸收塔入口,使之均匀地分布在热态烟气中。此时,吸收剂得到干燥,烟气得到冷却、增湿,烟气中的SO2在吸收塔中被吸收,最终生成CaSO3和CaSO4。除尘器后的洁净烟气经引风机(或增压风机)升压后通过烟囱排放,被除尘器捕集下来的含硫产物和未反应的吸收剂,部分注入吸收塔进行再循环,以达到提高吸收剂利用率的目的。
2.4旋转喷雾半干法烟气脱硫
喷雾干燥法脱硫工艺脱硫吸收剂是石灰,石灰经消化后加水形成消石灰乳,通过泵将其打入吸收塔内的雾化装置。在吸收塔内,被雾化后的吸收剂与烟气混合接触,并和烟气中的SO2发生化学反应,生成CaSO3和CaSO4,从而脱去烟气中的SO2。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形态随烟气带出吸收塔,进入除尘器被收集下来。为提高脱硫吸收剂的利用率,将部分脱硫灰渣返回制浆系统进行循环利用,其余的可综合利用。
该技术具有以下特点:技术成熟,流程简单,系统可靠性高;单塔处理能力大小(约200MW);中等脱硫效率70%~85%,钙的利用率较低,一般Ca/S=1.2~2.0,对生石灰品质要求不高;脱硫副产品呈干粉状,无废水排放,不过副产品利用有一定困难。此技术适应于中小规模机组,燃煤含硫量一般不超过1.5%,脱硫效率均低于90%。此技术在西欧的德国、奥地利、意大利、丹麦、瑞典、芬兰等国家应用比较多,主要应用于小型电厂或垃圾焚烧装置,美国也有15套装置(总容量500MW)正在运行,其中最大单机容量为520MW。1993年,我国山东黄岛电厂4号机组(210MW)引进了三菱旋转喷雾干燥脱硫工艺装置,处理烟气量为3×106m3/h,设计脱硫效率为70%。运行初期出现过吸收塔塔壁积灰、喷嘴结垢堵塞、R/A圆盘磨损等问题,但经过改进后基本运行正常。
3.结语
从吸收塔各阶段振型的分析可以看出,整体高阶振型出现的相对较晚,局部振动比较明显,曾大部分塔身的壁厚,吸收塔的固有频率稍有增大,虽然振兴的幅度不会很明显,只是稍有改善。梁端设计竖向加强会使吸收塔的固有频率提高很大,说明这种加强改变了塔体的钢度分布。浆液的存在对吸收塔的固有频率的影响是随着阶数的增加而增加,但对基频率的影响较小。本文的研究对象改造为大直径,薄壁,大开口,对此类的结构的稳定性需要研究者高度重视。
参考文献
[1]周海滨,张东明,常燕.深度脱氮技术在电厂中水回用中的应用[J].工业水处理,2011,31(3):81-84.
[2]韩买良,马学武,吴志勇.火电厂水处理岛优化设计研究[J].华电技术,2010,32(6):12-16.
[3]徐庆东,张海燕.中水腐蚀特性试验与分析[J].华电技术,2008,30(3):29-32.
[4]韩买良,马学武,吴志勇.火电厂水处理岛优化设计研究[J].华电技术,2010,32(6):12-16.