APP下载

普通烟草IRL基因反义植物表达载体的构建

2014-12-02陈伟马建光李红勋潘文杰

湖北农业科学 2014年19期

陈伟+马建光+李红勋+潘文杰

摘要:异黄酮还原酶相似蛋白(IRL)是与异黄酮还原酶具有高度序列同源一致性而功能不同的一类蛋白。通过PCR扩增普通烟草(Nicotiana tabacum)品种龙里红花烟IRL基因的一段特异保守片段NtIRLA,并将其亚克隆到中间载体pCAMBIA2301G中,构建了IRL反义植物表达载体pCAMBIA2301G-IRLA。通过PCR鉴定、酶切鉴定证实载体构建成功,并转化到根癌农杆菌LBA4404菌株中形成工程菌株,为进一步利用转基因手段明确IRL基因在烟草次生代谢中的功能奠定了基础。

关键词:类异黄酮还原酶基因;反义表达载体;普通烟草

中图分类号:S572 文献标识码:A 文章编号:0439-8114(2014)19-4730-04

DOI:10.14088/j.cnki.issn0439-8114.2014.19.059

Construction of an Antisense Plant Expression Vector of IRL from Common Tobacco

CHEN Wei1, MA Jian-guang2, LI Hong-xun1,PAN Wen-jie1

(1. Guizhou Academy of Tobacco Science, Guiyang 550081,China;

2. Guizhou Weining Municipal Tobacco Company, Weining 553100, Guizhou,China)

Abstract: Isoflavone reductase-like protein has highly homologous consistency of sequences with isoflavone reductase, but their function was different. In order to reveal its function in metabolism pathway, a specific conserved fragment of NtIRLA from Nicotiana tabacum Longlihonghua was amplified by PCR and subcloned into intermediate vector pCAMBIA2301G. An antisense plant expression vector pCAMBIA2301G-IRLA was constructed, confirmed by PCR analysis and endonuclease digestion. Then the recombinant vector was introduced into agrobacterium tumefaciens strain LBA4404 to form an engineered strain. It will lay a foundation for studying biological function of IRL gene involved in tobacco metabolism with transgenic approach.

Key words: isoflavone reduetase-like gene;antisense vector;common tobacco

异黄酮还原酶相似蛋白(IRL)是一类蛋白质的统称,包括松脂醇-落叶松脂醇还原酶(PLR)、苯基香豆满苄基醚还原酶(PcBER)及其他与异黄酮还原酶具有高度序列同源一致性而功能非异黄酮还原酶的一类蛋白质。PLR、IFR和PcBER是具有高同源性的SDR(Short-chain dehydrogenasez/eduetase)家族成员[1],是具有NADPH依赖性的芳香醇还原酶,属于PIP酶亚家族[2],均参与重要苯丙素衍生物植物防御类化合物的合成。该类蛋白质与苜蓿IFR序列有显著同源性,2种蛋白质不仅具有高度的基因序列相似,而且其结构也具有高度相似性。

近年来,一些与PLR、PCBER、IFR、IFR基因具有高度同源性的相关基因己经从多种植物中被分离出来[3],这些基因统称为类异黄酮还原酶基因(IRL)。从前人的研究[4-6]可以推论,NtIRL基因编码属于IFR家族中异常的依赖于NADPH的还原酶,位于nic的下游,能够被MeJA诱导表达,被乙烯及其类似物所抑制,参与烟碱或其相关的生物碱合成途径的调控。目前,关于NtIRL基因的功能还没有直接证据,本研究构建了普通烟草IRL基因反义植物表达载体,为通过转基因操作分析普通烟草NtIRL基因的生物功能奠定基础,旨在为探索烟草次生物质代谢工程,创造优质烟草育种新材料提供参考。

1 材料与方法

1.1 植物材料

供试材料为普通烟草品种(Nicotiana tabacum)龙里红花烟,田间常规种植。取一株典型烟株的嫩叶,立即放入液氮并于-80 ℃超低温冰箱保存,用于抽提RNA。

1.2 菌株和质粒

大肠杆菌菌株DH5α、根癌农杆菌(Agrobacterium tumefaciens)菌株LBA4404、植物表达中间载体pCAMBIA2301G来自西南大学生物技术与作物品质改良重点实验室,pMD18-T载体购自宝生物工程(大连)有限公司。

1.3 NtIRL基因家族反义片段的克隆

对克隆的普通烟草IRL基因和已报道的IRL基因序列进行多重比对,找出该基因在不同物种中共同的保守区,设计引物FNtIRLA(5′-GAGCTCAAAAATCCGATTTAATTCCTAGTTTCTAGC-3′)和RNtIRLA(5′-GGATCCTGGAATAAGACGAAAAATA

GAAAACAACAG-3′) ,为便于定向克隆,上、下游引物的5′端分别引入了一个SacⅠ或BamHⅠ酶切位点。以龙里红花烟草根系总cDNA为模板,采用高保真的Pfu DNA聚合酶进行PCR扩增,50 μL 体系中含1.0 μL 模板和2.5 U/μL Pfu DNA聚合酶。反应条件为94 ℃预变性2 min,94 ℃变性1 min,55 ℃退火1 min,72 ℃延伸2 min,35个循环,最后72 ℃延伸10 min。PCR产物进行电泳检测,回收目的条带,然后进行亚克隆和测序。

1.4 NtIRL基因家族反义表达植物载体的构建与鉴定

将含有经测序验证无误的pMD18-T-IRLA载体的DH5α单克隆进行培养,对数晚期后提取质粒,用BamHⅠ和SacⅠ双酶切,同时双酶切植物表达中间载体pCAMBIA2301G。回收IRLA目的片段和切去GUS基因后的pCAMBIA2301G载体骨架。将回收的2种片段用T4 DNA连接酶连接,并转化DH5α感受态。从鉴定无误的大肠杆菌单克隆菌液中抽提重组质粒,用液氮冷激法[7]转化农杆菌LBA4404,鉴定正确的阳性单克隆子进行培养,作为植物转化的工程菌株。

2 结果与分析

2.1 NtIRL基因反义片段的克隆

采用带有SacⅠ/BamHⅠ酶切位点的PCR引物FNtIRLA和RNtIRLA,以龙里红花烟草根系总cDNA为模板,扩增出了与预期的1 179 bp大小相吻合的条带(图1)。回收目的条带进行TA克隆,转化DH5α, 挑选单菌落测序,获得了与前面所克隆的NtIRL全长cDNA对应序列相一致的连接于pMD18-T Vector上的阳性克隆,并抽提出大小约3.8 kb的质粒(图2)。

2.2 NtIRLA基因植物反义表达载体的构建

对上述抽提的pMD18-T-NtIRLA质粒进行SacⅠ/BamHⅠ完全双酶切后,经过1%琼脂糖凝胶电泳分析,酶切后产生1 179 bp大小的NtIRLA目的片段和约2.7 kb的pMD18-T载体骨架条带(图3),证实重组的pMD18-T中含有NtIRLA,回收酶切片段。采用文献[7]中的方法对中间表达载体pCAMBIA2301G质粒(图4)同样进行BamHⅠ/SacⅠ双酶切,切去1. 9 kb的GUS基因(图5),回收约12 kb 的pCAMBIA2301G 载体骨架,将带粘性末端的NtIRLA目标片段与之相连,得到重组质粒pCAM2BIA2301G-NtIRLA。

2.3 NtIRLA基因植物反义表达载体的鉴定

将重组质粒pCAM2BIA2301G-NtIRLA进行双酶切鉴定,切下一条大小约1 200 bp的片段,与反义片段预测大小一致(图6)。鉴定表明,NtIRLA目标片段已定向克隆到中间载体pCAMBIA2301G中,成功替换上面的GUS基因,形成了植物表达载体pCAM2BIA2301G-NtIRLA,表明载体构建成功。将大肠杆菌中抽提的含有目的基因的植物表达载体质粒转化到根癌农杆菌LBA4404中,对Kan+Str+Rif表现为三重抗性的转化子单克隆进行了PCR检测(图7),阳性克隆检测结果与大肠杆菌一致,可用于植物转化。构建成功的含NtIRLA表达盒的重组pCAMBIA2301G载体取名为pNtIRLA,其目的基因均由CaMV 35S启动子驱动,由NOS终止子终止转录,同时在T-DNA边界内分别连锁有报告基因GUS和筛选标记基因nptⅡ的表达盒(图8)。

3 讨论

NtIRL基因最早是1994年Hibi等[4]在普通烟草低烟碱突变体中克隆了该基因的cDNA全长,该基因可能编码异黄酮还原酶,在烟草的根中特异表达,且该基因的表达受茉莉酸酮酯的诱导。Shoji等[5]的研究表明,NtIRL能选择性和NADPH结合,是一种依赖于NADPH的氧化还原酶。IRL基因在野生型烟草和普通烟草的根和茎中表达,但在nic1nic2双突变体的根和茎中几乎没有表达。在MeJA诱导下,野生型烟草和普通烟草中烟碱合成途径的相关结构酶基因表达增加,而在双突变体nic1nic2中,MeJA的处理下,IRL基因的表达量几乎没有变化。在不同时间和不同浓度MeJA处理下,IRL、PMT、ODC基因表达量的变化相似。推测NtIRL基因可能参与烟碱合成途径的调控,且在nic基因的下游。同时Shoji等[6]研究发现,IRL和PMT蛋白质在根中积聚,而不在叶片中积累,IRL蛋白质和PMT蛋白质在烟草根尖相同类型的细胞中积聚,且分布规律相似。在受MeJA诱导后,从转录和翻译水平上,IRL和PMT基因的变化规律相似,推测NtIRL基因的功能可能与PMT基因相似。但是,要阐明NtIRL基因的具体生物功能,仅有表达分析是不够的,必需进一步通过遗传转化和转基因植株的成分鉴定等手段进行功能分析。

一些IRL基因己经从多种植物中被分离出来,其中有一些蛋白质是PLR、PCBER或者是IFR的垂直同源体,催化不同的反应。它们可能参与应答生物或非生物胁迫。例如,玉米IRL基因参与硫饥饿应答反应[8];柚子IRL基因参与应答紫外辐射[9],水稻的IRL基因则会被稻瘟病真菌诱导而编码产生相应的蛋白质或酶[1];拟南芥中的IRL基因被氧化胁迫诱导,编码产生相应蛋白[10]。马铃薯IRL基因在花粉管生长过程中表达IFR蛋白同系物[11]。有些IRL蛋白也可能参与催化独特的还原反应。例如,金钟连翘木脂素合成途径中的PLR[3],PLR还参与鬼臼属植物中抗病毒剂鬼臼毒素的形成。PLR还能催化产生具有重要生理作用的代谢产物。例如,在西方桧柏类似植物中合成的皱酸,能保证其组织的耐久力和结构的完整性[11]。PcBER催化8-5连接的木脂素的还原过程。例如,去氢双松柏醇在植物防御中有类似作用。PcBER是火炬松木脂素合成途径的关键酶。IFR参与如紫花苜蓿中苜蓿素等多种植物抗毒素的合成途径[12]。因此,构建普通烟草IRL基因反义植物表达载体,通过遗传转化,为揭示普通烟草IRL基因的功能,修饰烟草次生物质代谢途径相关的性状奠定了基础。

参考文献:

[1] GANG D R, DINKOVA-KOSTOVA A T, DAVIN L B, et al. Phylogenetic links in plant defense systems: Lignans,isoflavonoids and their reduetases[J]. American Chemical Society , 1997, 658: 58-89.

[2] VASSAO D G,KIM S J,MILHOLLAN J K, et al. A pinoresinol-lariciresinol reductase homologue from the creosote bush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeugenol [J]. Biochem Biophys, 2007, 465(1): 209-218.

[3] ALBENA T, DINKOVA K, GANG D R, et al. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia [J]. J Biol Chem, 1996, 271(46): 29473-29482.

[4] HIBI N, HIGASHIGUCHI S, HASHIMOTO T, et al. Gene expression in tobacco low-nicotine mutants[J]. Plant Cell, 1994, 6(5): 723-735.

[5] SHOJI T, WINZ1 R, IWASE T, NAKAJIMA K, et al. Expression patterns of two tobacco isoflavone reductase-like genes andtheir possible roles in secondary metabolism in tobacco [J]. Plant Mol Biol, 2002, 50: 427-440.

[6] SHOJI T, YAMADA Y, HASHIMOTO T. Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris[J]. Plant Cell Physiol, 2000, 41(7): 831-839.

[7] 柴友荣.植物抗大丽轮枝菌受体类蛋白基因及甘露糖结合型凝集素基因的克隆与表达[D].重庆:西南农业大学,2003.

[8] GANG D R, KASAHARA H,XIA Z Q, et al. Evolution of plant defense mechanism[J]. J Biol Chem, 1999,274(11):7516-7527.

[9] MIN T,KASAHARA H,BEDGAR D L, et al. Crystal structures of pinoresinol-larieiresinol and phenyleoumaran benzylic ether reductases and their relationship to isoflavone reductases[J]. J Biol Chem,2003,278(50):50714-50723.

[10] BABIYEHUK E,KUSHNIRM S,BELLES B E, et al. Arabidopsis thaliana NADH oxidoreductase homologs confer tolerance of yeasts toward the thiol- oxidizing drug diamin[J]. J Biol Chem,1995,270:26224-26231.

[11] VAN ELDIK G J, RUITER R K, COLLA P H, et al. Expression of an isoflavone reductase-like gene enhanced by pollen tube growth in pistils of Solanum tuberosum[J]. Plant Mol Biol, 1997, 33(5): 923-929.

[12] KARAMLOO F, SCHMITZ N, SCHEURER S, et al. Molecular cloning and characterization of a birch pollen minor allegen,betes belonging to family of isoflavone reduetase-like proteins[J]. J Allegy Clin Immunol, 1999,104:991-999.

参考文献:

[1] GANG D R, DINKOVA-KOSTOVA A T, DAVIN L B, et al. Phylogenetic links in plant defense systems: Lignans,isoflavonoids and their reduetases[J]. American Chemical Society , 1997, 658: 58-89.

[2] VASSAO D G,KIM S J,MILHOLLAN J K, et al. A pinoresinol-lariciresinol reductase homologue from the creosote bush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeugenol [J]. Biochem Biophys, 2007, 465(1): 209-218.

[3] ALBENA T, DINKOVA K, GANG D R, et al. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia [J]. J Biol Chem, 1996, 271(46): 29473-29482.

[4] HIBI N, HIGASHIGUCHI S, HASHIMOTO T, et al. Gene expression in tobacco low-nicotine mutants[J]. Plant Cell, 1994, 6(5): 723-735.

[5] SHOJI T, WINZ1 R, IWASE T, NAKAJIMA K, et al. Expression patterns of two tobacco isoflavone reductase-like genes andtheir possible roles in secondary metabolism in tobacco [J]. Plant Mol Biol, 2002, 50: 427-440.

[6] SHOJI T, YAMADA Y, HASHIMOTO T. Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris[J]. Plant Cell Physiol, 2000, 41(7): 831-839.

[7] 柴友荣.植物抗大丽轮枝菌受体类蛋白基因及甘露糖结合型凝集素基因的克隆与表达[D].重庆:西南农业大学,2003.

[8] GANG D R, KASAHARA H,XIA Z Q, et al. Evolution of plant defense mechanism[J]. J Biol Chem, 1999,274(11):7516-7527.

[9] MIN T,KASAHARA H,BEDGAR D L, et al. Crystal structures of pinoresinol-larieiresinol and phenyleoumaran benzylic ether reductases and their relationship to isoflavone reductases[J]. J Biol Chem,2003,278(50):50714-50723.

[10] BABIYEHUK E,KUSHNIRM S,BELLES B E, et al. Arabidopsis thaliana NADH oxidoreductase homologs confer tolerance of yeasts toward the thiol- oxidizing drug diamin[J]. J Biol Chem,1995,270:26224-26231.

[11] VAN ELDIK G J, RUITER R K, COLLA P H, et al. Expression of an isoflavone reductase-like gene enhanced by pollen tube growth in pistils of Solanum tuberosum[J]. Plant Mol Biol, 1997, 33(5): 923-929.

[12] KARAMLOO F, SCHMITZ N, SCHEURER S, et al. Molecular cloning and characterization of a birch pollen minor allegen,betes belonging to family of isoflavone reduetase-like proteins[J]. J Allegy Clin Immunol, 1999,104:991-999.

参考文献:

[1] GANG D R, DINKOVA-KOSTOVA A T, DAVIN L B, et al. Phylogenetic links in plant defense systems: Lignans,isoflavonoids and their reduetases[J]. American Chemical Society , 1997, 658: 58-89.

[2] VASSAO D G,KIM S J,MILHOLLAN J K, et al. A pinoresinol-lariciresinol reductase homologue from the creosote bush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeugenol [J]. Biochem Biophys, 2007, 465(1): 209-218.

[3] ALBENA T, DINKOVA K, GANG D R, et al. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia [J]. J Biol Chem, 1996, 271(46): 29473-29482.

[4] HIBI N, HIGASHIGUCHI S, HASHIMOTO T, et al. Gene expression in tobacco low-nicotine mutants[J]. Plant Cell, 1994, 6(5): 723-735.

[5] SHOJI T, WINZ1 R, IWASE T, NAKAJIMA K, et al. Expression patterns of two tobacco isoflavone reductase-like genes andtheir possible roles in secondary metabolism in tobacco [J]. Plant Mol Biol, 2002, 50: 427-440.

[6] SHOJI T, YAMADA Y, HASHIMOTO T. Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris[J]. Plant Cell Physiol, 2000, 41(7): 831-839.

[7] 柴友荣.植物抗大丽轮枝菌受体类蛋白基因及甘露糖结合型凝集素基因的克隆与表达[D].重庆:西南农业大学,2003.

[8] GANG D R, KASAHARA H,XIA Z Q, et al. Evolution of plant defense mechanism[J]. J Biol Chem, 1999,274(11):7516-7527.

[9] MIN T,KASAHARA H,BEDGAR D L, et al. Crystal structures of pinoresinol-larieiresinol and phenyleoumaran benzylic ether reductases and their relationship to isoflavone reductases[J]. J Biol Chem,2003,278(50):50714-50723.

[10] BABIYEHUK E,KUSHNIRM S,BELLES B E, et al. Arabidopsis thaliana NADH oxidoreductase homologs confer tolerance of yeasts toward the thiol- oxidizing drug diamin[J]. J Biol Chem,1995,270:26224-26231.

[11] VAN ELDIK G J, RUITER R K, COLLA P H, et al. Expression of an isoflavone reductase-like gene enhanced by pollen tube growth in pistils of Solanum tuberosum[J]. Plant Mol Biol, 1997, 33(5): 923-929.

[12] KARAMLOO F, SCHMITZ N, SCHEURER S, et al. Molecular cloning and characterization of a birch pollen minor allegen,betes belonging to family of isoflavone reduetase-like proteins[J]. J Allegy Clin Immunol, 1999,104:991-999.