不同供钾水平下Na+对棉花幼苗根系生长和K、Ca、Mg、Na含量的影响
2014-12-02胡泽彬卜晶晶王素芳张志勇
胡泽彬+卜晶晶+王素芳+张志勇
摘要:在水培条件下研究了不同NaCl浓度(10.5和50.5 mmol/L)对不同钾供应水平(0.05和2.50 mmol/L)下棉花幼苗根系生长及K、Ca、Mg、Na含量的影响。结果表明,0.05 mmol/L K条件下,NaCl降低了根系中Ca、K和Mg含量,降低了K/Na值,但两种浓度的NaCl均显著提高了根系干物质量、根系总长度和表面积,其中直径≤0.2 mm的细根长度和表面积增加幅度最大,而2.50 mmol/L K条件下,仅10.5mmol/L的NaCl显著促进了根系总长度和表面积,但对根系干物质量没有显著影响,并且10.5 mmol/L的NaCl显著降低了K/Na值,而对Ca、K和Mg含量无显著影响。
关键词:棉花幼苗;NaCl胁迫;供钾水平;根系生长;钾、钠、钙、镁含量
中图分类号:S562.062;Q945.78 文献标识码:A 文章编号:0439-8114(2014)19-4543-04
DOI:10.14088/j.cnki.issn0439-8114.2014.19.009
Effects of Na+ on Root Growth of Cotton Seedlings and Contents of K,Ca,Mg
under Different Potassium Availability
HU Ze-bin,BU Jing-jing,WANG Su-fang,ZHANG Zhi-yong
(School of Life Science and Technology/Cotton Research Institute, Henan Institute of Science and Technology, Xinxiang 453003, Henan,China)
Abstract: The effects of NaCl with low concentration(10.5 and 50.5 mmol/L) on root growth of cotton seedling and contents of K, Ca, Mg and Na were studied under different K levels (0.05 and 2.5 mmol/L). Under 0.05 mmol/L K, NaCl reduced the contents of Ca, K and Mg and K/Na value, but significantly increased weight of dry root and total root length and surface area. Among which, fine root with diameter≤0.2 mm was enhanced with the highest margin. Under 2.5 mmol/L K, only 10.5 mmol/L NaCl significantly increased total root length and surface area with no significant effects on weight of dry root. 10.5 mmol/L NaCl significantly inhibited K/Na Value with no significant effects on contents of Ca, K and Mg.
Key words: cotton seedlings; NaCl stress; K level; root growth; K, Na, Ca, Mg contents
对动物而言,Na是一种必需元素,在饮食中必须以相对大的数量存在。但是,按照Arnon等[1]和Epstein[2]对必需元素的定义,除特定的C4植物之外,Na目前并没有显示是大多高等植物的必需元素。尽管Na并没符合必需元素的要求,但在植物营养方面发挥着独特的作用。因此,在植物上,Subbarao等[3]将Na离子定义为功能性离子。
棉花是喜K作物,K缺乏会降低纤维产量和品质[4]。同时,和玉米、大豆相比,棉花对Na的耐受性更强些[5,6],但是大量研究也表明,盐渍化大幅度抑制了棉花的营养生长[7,8]。在整个生长发育周期中,在幼苗期棉花对盐最敏感[9]。
随着世界人民对食物需求的增加和可耕地面积的减少,棉花种植向盐碱地转移。生产上,棉花经常早衰,在盐碱地上,这种情况更加严重。钾缺乏抑制了根系生长[10,11],而Na也抑制了根系生长[12,13],但是钾缺乏时Na对根系生长的作用目前尚未见报道。因此,在不同K供应水平条件下,研究了低浓度Na对棉花幼苗根系生长和根系K、Ca、Mg和Na含量的影响。
1 材料与方法
1.1 材料与方法
供试材料为国审棉百棉1号(河南科技学院选育)。培养室培养条件:光照时间/黑暗时间为14 h/10 h,光照为350 μmol/(m2·s),昼/夜温度为30~33 ℃/ 23~26 ℃。
挑选饱满的种子,用9%的双氧水消毒30 min后,取出用去离子水将种子冲洗干净,置于装有湿润沙子的盆钵中萌发,上面用塑料薄膜覆盖,并打少量孔以利通气,待子叶长出后,揭去薄膜,喷清水保持湿润,萌发1 d后从盆钵将萌发的幼苗转移到调整好的营养液中。盛放营养液的容器规格:长×宽×高为20 cm×13 cm×15 cm,容器的外层用铝泊纸包裹,其上有钻孔泡沫定植板,棉花幼苗用海绵包茎固定于泡沫板的孔洞中。待移栽后,在水培条件下培养,每天连续通气。营养液组成为:2.5 mmol/L的Ca(NO3 )2,1 mmol/L的MgSO4,0.5 mmol/L的NaH2PO4,2×10-4 mmol/L的CuSO4,1×10-3 mmol/L的ZnSO4,0.1mmol/L的EDTAFeNa,2×10-2 mmol/L的H3BO3,5×10-6 mmol/L的(NH4) 6Mo7O24和1×10-3 mmol/L的MnSO4和不同浓度的KCl和NaCl。K处理设两个水平:低钾0.05 mmol/L和高钾2.50 mmol/L,两个钾浓度下,NaCl处理设3个水平:0.5 mmol/L(CK),10.5 mmol/L,50.5 mmol/L。
1.2 棉花幼苗干重、根系形态、根系矿质元素含量测定
处理7 d后,选择大小、长势基本一致的幼苗用于棉花幼苗根干重、根系形态、矿质元素含量的测定。将整株幼苗的根系剪下,分散置于根系扫描盘中,利用根系扫描分析仪(Epson perfection 4990 PHOTO)透扫,将图像存为JPEG格式,用根系分析软件(WinRhizo pro 2007)自动分析根系总长、表面积、体积等。根据根系直径,将根系分为细根(直径≤0.2 mm)、中根(0.2 mm﹤直径≤0.45 mm)和粗根(直径>0.45 mm) [14]。
扫描后的根系在恒温烘箱中70 ℃下烘干后称重。将烘干后的棉花幼苗根系样品放入研钵中研磨,称取约0.1 g左右研磨后的棉花幼苗根系样品于样品瓶中,加入10 mL盐酸加盖拧紧,浸泡5 h后放置于HY-2往复振荡器上振荡30 min,提取上清液至事先编号的离心管中。采用电荷偶感等离子体发射光谱仪(型号PE-optima 2100 DV,USA)测定溶液中Mg、Na、Ca和K的含量。
1.3 试验设计和统计分析
以培养盒为单位,1盒为1次重复。每处理设4次重复,每盒8株。每个处理取样6次重复。所有数据采用SAS统计软件(8.0)的SNK多重比较法进行统计分析。
2 结果与分析
2.1 不同钾供应水平下,NaCl对棉花幼苗根系生长的影响
如表1所示,在低K供应水平下,10.5 mmol/L的NaCl显著增加了棉花幼苗根系干物质量,50.5 mmol/L的NaCl 进一步显著增加了棉花幼苗根系干物质量;在高K供应水平下,10.5 mmol/L的NaCl对棉花幼苗根系干物质量没有影响,而50.5 mmol/L的NaCl显著抑制了棉花幼苗根系干物质量。
如表1所示,在低K供应水平下,NaCl胁迫显著提高了根系总长度、表面积和体积,10.5 mmol/L 和50.5 mmol/L NaCl条件下的根总长度、表面积、体积间差异不显著。在高K供应水平下,10.5 mmol/L NaCl处理的根系总长度、表面积、体积均显著高于0.5和50.5 mmol/L NaCl处理的根系总长度、表面积、体积。
2.2 不同钾供应水平下,NaCl对棉花幼苗不同直径根生长的影响
如表2所示,在低K供应水平下,NaCl促进了细根和中根的根长度和根表面积,显著促进了粗根长度而对其表面积的增加没达到显著水平;50.5 mmol/L NaCl 相对于10.5 mmol/L NaCl,显著促进了细根长度而抑制了粗根长度,对细、中和粗根的表面积没有显著影响。在高K供应水平下,NaCl对细根长度无显著影响,10.5 mmol/L NaCl促进了中根和粗根的长度以及粗根的表面积。
2.3 不同钾供应水平下,NaCl对棉花幼苗根系中矿质元素含量的影响
如表3所示,在低K供应水平下,与对照相比,10.5 mmol/L 显著抑制了钾的吸收和增加了Na的吸收,对Ca和Mg吸收没有显著影响, 显著降低了K/Na值; 50.5 mmol/L NaCl显著抑制K、Ca和Mg的吸收和促进了Na的吸收,显著降低了K/Na值。在高K供应水平下,与对照相比, 10.5 mmol/L NaCl对根系吸收矿质元素Ca、Mg、K、Na的影响不显著,显著降低了K/Na值;50.5 mmol/L NaCl显著促进Ca、Mg和Na的吸收而抑制了K的吸收,显著降低了K/Na值。
3 讨论
K是植物代谢和生长所需要的大量元素[15]。Na不仅在化学性质和结构方面与K相似,而且在某种程度上可以替代钾的许多功能,如内部渗透调节[16]。并且,已有研究显示,Na对生长有益,可以提高产量[17-20],甚至改善品质[21,22]。但是,随着盐水平增加,棉花[23]和小麦[24]幼苗根系长度减少,两项研究中使用的最低NaCl浓度分别是50和100 mmol/L。此次的研究结果表明,低钾条件下,NaCl(10.5和50.5 mmol/L)促进了根系生长,显著提高了根系干物质量和根系总长度,根系总长度中,细根长度增加幅度最大,而高钾条件下,仅10.5 mmol/L显著促进了根系总长度,对根系干物质量没有显著影响。这表明,钾缺乏时,一定浓度的Na可以替代钾的功能,促进根系的生长,但不一定是内部渗透调节功能替代,因为钾缺乏条件下,0.5 mmol/L Na时,K和Na含量之和为39.7 mg/g(DW),而50.5 mmol/L Na时,两者含量之和为36.1 mg/g(DW),两者之间无明显差异。
Na处理降低了K/Na值,降低了缺钾条件下Ca和Mg的含量。同样,其他研究也表明,Na增加降低了棉花根系和茎叶中K和Ca的含量[25]。K和Na选择性弱化和Na诱导的K缺乏是盐胁迫条件下生长抑制和产量降低的主要原因[26],也是随着盐水平增加K/Na值降低的原因。Na削弱Ca吸收的原因或许是因为Na置换了细胞膜中的Ca和改变了膜的完整性[27]。在大多数植物中,离子积累具有毒性作用,打破了离子平衡[28],离子毒性导致细胞膜不可逆转的损害[29]。K充分条件下,Na增加却增加了根系中Ca和Mg的含量,或许是因为Na抑制了K的吸收,因为K是Ca和Mg吸收的强烈抑制剂[19,30]。
参考文献:
[1] ARNON D I, STOUT P R. The essentiality of certain elements in minute quantity for plants with special reference to copper [J]. Plant Physiology, 1939, 14(2): 371-375.
[2] EPSTEIN E. Mineral metabolism[A]. BONNER J AND VARNER J E. Plant Biochemistry[C]. New York:Academic Press, 1965.
[3] SUBBARAO G V, ITO O, BERRY W L, et al. Sodium-a functional plant nutrient[J]. Critical Reviews in Plant Sciences, 2003, 22(5): 391-416.
[4] CASSMAN K G, KERBY T A, ROBERTS B A, et al. Differential response of two cotton cultivars to fertilizer and soil potassium [J]. Agronomy Journal, 1989, 81(6): 870-876.
[5] PEARSON G A. Tolerance of crops to exchangeable sodium [J]. Agriculture Information Bulletin, 1960, 216: 1-4.
[6] MAAS E V. Crop salt tolerance[A].TANJI K K . Agricultural Assessment and Management[C]. New York :American Society for Civil Engineers, 1990.
[7] KHAN A N, QURESHI R H, AHMAD N. Selection of cotton cultivars for salinity tolerance at seedling stage[J]. Sarhad Journal of Agriculture, 1995, 1: 153-159.
[8] 叶武威, 刘金定, 樊宝相, 等. 盐分(NaCl)对陆地棉纤维性状的影响 [J]. 中国棉花, 1997, 24: 17-18.
[9] ABUI-NAAS A A, OMRAN M S. Salt tolerance of seventeen cotton cultivars during germination and early seedling development [J]. Z Ack Pflanzenbau, 1974, 140: 229-236.
[10] ARMENGAUD P, BREITLING R, AMTMANN A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling[J]. Plant Physiol, 2004, 136(1): 2556-2576.
[11] ZHANG Z Y, YANG F Q, LI B, et al. Coronatine-induced lateral-root formation in cotton (Gossypium hirsutum) seedlings under potassium-sufficient and -deficient conditions in relation to auxin[J]. Journal of Plant Nutrition and Soil Science, 2009, 172: 435-444.
[12] CRAMER G R, L?魧UCHLI A, EPSTEIN E. Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root growth of cotton[J]. Plant Physiology, 1986, 81(3): 792-797.
[13] MAI W X, TIAN C Y, LO L. Localized salt accumulation: the main reason for cotton root length decrease during advanced growth stages under drip irrigation with mulch film in a saline soil [J]. Journal of Arid Land, 2014, 6(3): 361-370.
[14] 张志勇, 王清连, 李召虎, 等. 缺钾对棉花幼苗根系生长的影响及其生理机制 [J]. 作物学报, 2009, 35(4): 718-723.
[15] HSIAO T C, LAUCHLI A. Role of potassium in plant-water relations[A]. Advances in Plant Nutrition.Vol 2[C]. New York:Praeger Scientific,1986.281-312.
[16] GLENN E, PFISTER R, BROWN J J, et al. Na and K accumulation and salt tolerance of Atriplex canescens (Chenopodiaceae) genotypes[J]. American Journal of Botany, 1996: 997-1005.
[17] GALEEV R R. Application of sodium humate to potatoes[J]. Kartofel′I Ovoshchi, 1990 (2): 12-13.
[18] TAKAHASHI E, MAEJIMA K. Comparative research on sodium as a beneficial element for crop plants[J]. Memoirs of the Faculty of Agriculture of Kinki University, 1998,31:57-72.
[19] MARSCHNER H. Mineral Nutrition of Higher Plants [M]. London:Academic Press, 1995.
[20] HANEKLAUS S, KNUDSEN L, SCHNUG E. Relationship between potassium and sodium in sugar beet [J]. Communications in Soil Science & Plant Analysis, 1998, 29(11-14): 1793-1798.
[21] VON BOBERFELD W O, SCHLOSSER M, LASER H. Effect of Na amounts on forage quality and feed consumption on Lolium perenne depending on fertilizer and nutrient ratio [J]. Agribiological Research, 1999, 52(3-4): 261-270.
[22] CHIY P C, PHILLIPS C J C. Sodium fertilizer application to pasture. 8. Turnover and defoliation of leaf tissue [J]. Grass and Forage Science, 1999, 54(4): 297-311.
[23] CHACHAR Q I, SOLANGI A G, VERHOEF A. Influence of sodium chloride on seed germination and seedling root growth of cotton (Gossypium hirsutum L.)[J]. Pakistan Journal of Botany, 2008, 40(1): 183-197.
[24] ALMANSOURI M, KINET J M, LUTTS S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.) [J]. Plant and Soil, 2001, 231(2): 243-254.
[25] KENT L M, L?魧UCHLI A. Germination and seedling growth of cotton: Salinity-calcium interactions [J]. Plant,Cell & Environment, 1985, 8(2): 155-159.
[26] GRATTAN S R, GRIEVE C M. Mineral nutrient acquisition and response by plants grown in saline environments[A]. PESSARAKLI M .Handbook of Plant and Crop Stress[C]. New York: Marcel Dekker, 1999.203-229.
[27] LYNCH J, CRAMER G R, LAUCHLI A. Salinity reduces membrane-associated calcium in corn root protoplasts [J]. Plant Physiology, 1987, 83: 390-394.
[28] HASEGAWA P M, BRESSAN R A, ZHU J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Biology, 2000, 51: 463-499.
[29] SERRANO R, GAXIOLA R. Microbial models and salt stress tolerance in plants [J]. Critical Reviews in Plant Sciences, 1994, 13(2): 121-138.
[30] GARCIA M, DAVEREDE C, GALLEGO P, et al. Effect of various potassium-cacium ratios on cation nutrition of grape grown hydroponically[J]. Journal of Plant Nutrition, 1999, 22(3): 417-425.
[17] GALEEV R R. Application of sodium humate to potatoes[J]. Kartofel′I Ovoshchi, 1990 (2): 12-13.
[18] TAKAHASHI E, MAEJIMA K. Comparative research on sodium as a beneficial element for crop plants[J]. Memoirs of the Faculty of Agriculture of Kinki University, 1998,31:57-72.
[19] MARSCHNER H. Mineral Nutrition of Higher Plants [M]. London:Academic Press, 1995.
[20] HANEKLAUS S, KNUDSEN L, SCHNUG E. Relationship between potassium and sodium in sugar beet [J]. Communications in Soil Science & Plant Analysis, 1998, 29(11-14): 1793-1798.
[21] VON BOBERFELD W O, SCHLOSSER M, LASER H. Effect of Na amounts on forage quality and feed consumption on Lolium perenne depending on fertilizer and nutrient ratio [J]. Agribiological Research, 1999, 52(3-4): 261-270.
[22] CHIY P C, PHILLIPS C J C. Sodium fertilizer application to pasture. 8. Turnover and defoliation of leaf tissue [J]. Grass and Forage Science, 1999, 54(4): 297-311.
[23] CHACHAR Q I, SOLANGI A G, VERHOEF A. Influence of sodium chloride on seed germination and seedling root growth of cotton (Gossypium hirsutum L.)[J]. Pakistan Journal of Botany, 2008, 40(1): 183-197.
[24] ALMANSOURI M, KINET J M, LUTTS S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.) [J]. Plant and Soil, 2001, 231(2): 243-254.
[25] KENT L M, L?魧UCHLI A. Germination and seedling growth of cotton: Salinity-calcium interactions [J]. Plant,Cell & Environment, 1985, 8(2): 155-159.
[26] GRATTAN S R, GRIEVE C M. Mineral nutrient acquisition and response by plants grown in saline environments[A]. PESSARAKLI M .Handbook of Plant and Crop Stress[C]. New York: Marcel Dekker, 1999.203-229.
[27] LYNCH J, CRAMER G R, LAUCHLI A. Salinity reduces membrane-associated calcium in corn root protoplasts [J]. Plant Physiology, 1987, 83: 390-394.
[28] HASEGAWA P M, BRESSAN R A, ZHU J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Biology, 2000, 51: 463-499.
[29] SERRANO R, GAXIOLA R. Microbial models and salt stress tolerance in plants [J]. Critical Reviews in Plant Sciences, 1994, 13(2): 121-138.
[30] GARCIA M, DAVEREDE C, GALLEGO P, et al. Effect of various potassium-cacium ratios on cation nutrition of grape grown hydroponically[J]. Journal of Plant Nutrition, 1999, 22(3): 417-425.
[17] GALEEV R R. Application of sodium humate to potatoes[J]. Kartofel′I Ovoshchi, 1990 (2): 12-13.
[18] TAKAHASHI E, MAEJIMA K. Comparative research on sodium as a beneficial element for crop plants[J]. Memoirs of the Faculty of Agriculture of Kinki University, 1998,31:57-72.
[19] MARSCHNER H. Mineral Nutrition of Higher Plants [M]. London:Academic Press, 1995.
[20] HANEKLAUS S, KNUDSEN L, SCHNUG E. Relationship between potassium and sodium in sugar beet [J]. Communications in Soil Science & Plant Analysis, 1998, 29(11-14): 1793-1798.
[21] VON BOBERFELD W O, SCHLOSSER M, LASER H. Effect of Na amounts on forage quality and feed consumption on Lolium perenne depending on fertilizer and nutrient ratio [J]. Agribiological Research, 1999, 52(3-4): 261-270.
[22] CHIY P C, PHILLIPS C J C. Sodium fertilizer application to pasture. 8. Turnover and defoliation of leaf tissue [J]. Grass and Forage Science, 1999, 54(4): 297-311.
[23] CHACHAR Q I, SOLANGI A G, VERHOEF A. Influence of sodium chloride on seed germination and seedling root growth of cotton (Gossypium hirsutum L.)[J]. Pakistan Journal of Botany, 2008, 40(1): 183-197.
[24] ALMANSOURI M, KINET J M, LUTTS S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.) [J]. Plant and Soil, 2001, 231(2): 243-254.
[25] KENT L M, L?魧UCHLI A. Germination and seedling growth of cotton: Salinity-calcium interactions [J]. Plant,Cell & Environment, 1985, 8(2): 155-159.
[26] GRATTAN S R, GRIEVE C M. Mineral nutrient acquisition and response by plants grown in saline environments[A]. PESSARAKLI M .Handbook of Plant and Crop Stress[C]. New York: Marcel Dekker, 1999.203-229.
[27] LYNCH J, CRAMER G R, LAUCHLI A. Salinity reduces membrane-associated calcium in corn root protoplasts [J]. Plant Physiology, 1987, 83: 390-394.
[28] HASEGAWA P M, BRESSAN R A, ZHU J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Biology, 2000, 51: 463-499.
[29] SERRANO R, GAXIOLA R. Microbial models and salt stress tolerance in plants [J]. Critical Reviews in Plant Sciences, 1994, 13(2): 121-138.
[30] GARCIA M, DAVEREDE C, GALLEGO P, et al. Effect of various potassium-cacium ratios on cation nutrition of grape grown hydroponically[J]. Journal of Plant Nutrition, 1999, 22(3): 417-425.