小麦GDH1基因克隆及其功能标记开发
2014-11-22李冰张照贵王佳佳等
李冰 张照贵 王佳佳 等
摘要:谷氨酸脱氢酶(glutamate dehydrogenase, GDH)在植物体内催化合成谷氨酸的可逆反应,通过GDH固氮比谷氨酸合成酶途径更节省能量。在植物大多数组织中,GDH1是该基因家族中表达最高的基因,比其他GDH成员具有更为重要的作用。本研究从普通小麦基因组中分离了TaGDH1基因在A、B、D染色体组的序列。针对TaGDH1a基因在基因组DNA序列1 900~1 983 bp位置存在的核苷酸差异设计了一个插入/缺失标记,同时将该标记定位在5A染色体上。
关键词:小麦;TaGDH1;同源克隆;功能标记
中图分类号:S512.103.3文献标识号:A文章编号:1001-4942(2014)10-0006-06
3讨论
普通小麦为异源六倍体(2n=6x=42),具有六个染色体组,在二倍体物种中为单拷贝的基因在普通小麦中可能有3个拷贝,分别由A、B和D三个亚基因组编码,因此区分基因所在的染色体组比较困难[20]。郝丽芳等[21]在对小麦NOA基因所属染色体组区分时,设计两对保守的跨内含子的引物,通过基因组PCR、克隆和测序后的序列多态性分析,确定了小麦基因组中至少存在3个NOA成员,结合基于毛细管电泳的片段分析将3个成员定位在6A、6B和6D染色体上。李亚青[22]等以中国春缺体-四体系为材料,用Southern杂交的方法将TaGSK1基因定位于第一同源群的1A、1B和1D染色体。张磊等[23]利用特异引物在中国春缺体-四体中扩增产物的长度差异,将TaCKX5基因定位在小麦的3A、3B和3D染色体上。本研究利用二倍体、四倍体中各染色体组与六倍体小麦中的相对应染色体组基因相似度高的特点,将通过基因克隆获得的二倍体、四倍体GDH1基因与六倍体小麦中的TaGDH1基因序列进行对比,以区分三条TaGDH1基因所属的染色体组。同时结合中国春缺体-四体染色体定位和RIL群体连锁分析的方法将TaGDH1a-InDel标记定位在5A染色体上。
Andersen等[24]首先提出基因功能标记概念,功能标记的多态性来源于造成等位基因功能差异的DNA序列差异,可以进行基因型鉴定和基因型选择。因此,开发功能标记对于提高小麦育种效率具有重要意义。本研究中TaGDH1a基因功能标记的开发有助于GDH1在小麦中功能的研究以及TaGDH1基因型的鉴别。碳、氮代谢直接影响作物经济产量。已有研究表明,小麦中大部分与驯化和产量形成有关的QTL位点都聚集在第一和第五同源群染色体上[25, 26]。其中5A染色体上已发现存在控制穗长、穗粒数、穗粒重等小麦产量性状的主效QTL位点区域[27, 28]。本研究通过中国春缺体-四体系统,结合连锁分析的方法,成功将TaGDH1a基因定位到了小麦5A染色体上,为今后结合5A上已知产量性状相关QTL研究TaGDH1基因功能奠定了基础。
参考文献:
[1]
Windass J D, Worsey M J, Pioli E M, et al. Improved conversion of methanol to single-cell protein by Methylophilus methylotrophus[J]. Nature, 1980, 287: 396-401.
[2]Helling R B. Pathway choice in glutamate synthesis in Escherichia coli [J]. Journal of Bacteriology, 1998, 180: 4571-4575.
[3]Fontaine J X, Tercé-Laforgue T, Bouton S, et al. Further insights into the isoenzyme composition and activity of glutamate dehydrogenase in Arabidopsis thaliana [J]. Plant Signaling and Behavior, 2013, 8:e23329.
[4]沈成国, 余松烈. 一次结实植物的衰老与氮再分配[J]. 植物生理学通讯, 1998, 34(4): 288-296.
[5]Kumar R G, Shah K, Dubey R S. Salinity induced behavioural changes in malate dehydrogenase and glutamate dehydrogenase activities in rice seedlings of differing salt tolerance [J]. Plant Science, 2000, 156: 23-34.
[6]Osuji G O, Braithwaite C. Signaling by glutamate dehydrogenase in response to pesticide treatment and nitrogen fertilization of peanut (Arachis hypogaea L.) [J]. Journal of Agricultural and Food Chemistry, 1999, 47: 3332-3344.
[7]林清华, 李常健, 彭进, 等. NaCl 对水稻谷氨酸合酶和谷氨酸脱氢酶的胁迫作用[J]. 武汉植物学研究, 2000,18(3):206-210.
[8]马敬坤, 袁永泽, 欧吉权, 等. 外源水杨酸对水稻(Oryza sativa L.) 幼苗根的 NaCl 胁迫缓解效应[J]. 武汉大学学报: 理学版, 2006, 52(4):471-474.
[9]Lu B, Yuan Y, Zhang C, et al. Modulation of key enzymes involved in ammonium assimilation and carbon metabolism by low temperature in rice (Oryza sativa L.) roots [J]. Plant Science, 2005, 169:295-302.
[10]Qiu X, Xie W, Lian X, et al. Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation [J]. Plant Cell Reports, 2009, 28: 1115-1126.
[11]Tercé-Laforgue T, Bedu M, Dargel-Grafin C, et al. Resolving the role of plant glutamate dehydrogenase: II. physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously [J]. Plant and Cell Physiology, 2013, 54: 1635-1647.
[12]Hirel B, Bertin P, Quilleré I, et al. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize [J]. Plant Physiology, 2001, 125: 1258-1270.
[13]Limami A M, Rouillon C, Glevarec G, et al. Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase [J]. Plant Physiology, 2002, 130: 1860-1870.
[14]Obara M, Kajiura M, Fukuta Y, et al. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.) [J]. Journal of Experimental Botany, 2001, 52: 1209-1217.
[15]Bagge M, Xia X, Lübberstedt T. Functional markers in wheat [J]. Current Opinion in Plant Biology, 2007, 10: 211-216.
[16]乔麟轶, 张磊, 张文萍, 等. 小麦生长素结合基因TaABP1-D的克隆、功能标记开发及其与株高的关联[J]. 作物学报, 2012, 38(11): 2034-2041.
[17]刘亚男. 普通小麦细胞壁转化酶基因TaCwi-Al的表达和直立密穗(DEP1)基因克隆与功能标记开发[D].北京:中国农业科学院, 2012.
[18]Devos K M, Gale M D. The use of random amplified polymorphic DNA markers in wheat [J]. Theoretical and Applied Genetics, 1992, 84: 567-572.
[19]Haudry A, Cenci A, Ravel C, et al. Grinding up wheat: a massive loss of nucleotide diversity since domestication[J]. Mol. Biol. Evol., 2007, 24: 1506-1517.
[20]Lazo G R, Chao S, Hummel D D, et al. Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.) EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map [J]. Genetics, 2004, 168: 585-593.
[21]郝丽芳, 余春梅, 李斌, 等. 普通小麦中一氧化氮相关因子 (TaNOA) 编码基因的克隆和分子生物学分析[J]. 生物工程学报, 2010, 26: 48-56.
[22]李亚青,毛新国,赵宝存,等. 小麦糖原合成酶激酶基因(TaGSK1)的染色体定位[J]. 华北农学报,2006,21(5):39-41.
[23]张磊, 张宝石, 周荣华, 等. 小麦细胞分裂素氧化/脱氢酶基因(TaCKX5)的克隆及其染色体定位[J]. 中国农业科学, 2008, 41(3):636-642.
[24]Andersen J R, Lbberstedt T. Functional marks in plants [J]. Trends in Plant Science, 2003, 8:554-560.
[25]Peng J, Ronin Y, Fahima T, et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat [J]. Proceedings of the National Academy of Sciences, 2003, 100: 2489-2494.
[26]Brner A, Schumann E, Fürste A, et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2002, 105: 921-936.
[27]Jantasuriyarat C, Vales M I, Watson C J W, et al. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2004, 108: 261-273.
[28]Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat [J]. Theoretical and Applied Genetics, 2000, 101: 1114-1121.
[9]Lu B, Yuan Y, Zhang C, et al. Modulation of key enzymes involved in ammonium assimilation and carbon metabolism by low temperature in rice (Oryza sativa L.) roots [J]. Plant Science, 2005, 169:295-302.
[10]Qiu X, Xie W, Lian X, et al. Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation [J]. Plant Cell Reports, 2009, 28: 1115-1126.
[11]Tercé-Laforgue T, Bedu M, Dargel-Grafin C, et al. Resolving the role of plant glutamate dehydrogenase: II. physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously [J]. Plant and Cell Physiology, 2013, 54: 1635-1647.
[12]Hirel B, Bertin P, Quilleré I, et al. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize [J]. Plant Physiology, 2001, 125: 1258-1270.
[13]Limami A M, Rouillon C, Glevarec G, et al. Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase [J]. Plant Physiology, 2002, 130: 1860-1870.
[14]Obara M, Kajiura M, Fukuta Y, et al. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.) [J]. Journal of Experimental Botany, 2001, 52: 1209-1217.
[15]Bagge M, Xia X, Lübberstedt T. Functional markers in wheat [J]. Current Opinion in Plant Biology, 2007, 10: 211-216.
[16]乔麟轶, 张磊, 张文萍, 等. 小麦生长素结合基因TaABP1-D的克隆、功能标记开发及其与株高的关联[J]. 作物学报, 2012, 38(11): 2034-2041.
[17]刘亚男. 普通小麦细胞壁转化酶基因TaCwi-Al的表达和直立密穗(DEP1)基因克隆与功能标记开发[D].北京:中国农业科学院, 2012.
[18]Devos K M, Gale M D. The use of random amplified polymorphic DNA markers in wheat [J]. Theoretical and Applied Genetics, 1992, 84: 567-572.
[19]Haudry A, Cenci A, Ravel C, et al. Grinding up wheat: a massive loss of nucleotide diversity since domestication[J]. Mol. Biol. Evol., 2007, 24: 1506-1517.
[20]Lazo G R, Chao S, Hummel D D, et al. Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.) EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map [J]. Genetics, 2004, 168: 585-593.
[21]郝丽芳, 余春梅, 李斌, 等. 普通小麦中一氧化氮相关因子 (TaNOA) 编码基因的克隆和分子生物学分析[J]. 生物工程学报, 2010, 26: 48-56.
[22]李亚青,毛新国,赵宝存,等. 小麦糖原合成酶激酶基因(TaGSK1)的染色体定位[J]. 华北农学报,2006,21(5):39-41.
[23]张磊, 张宝石, 周荣华, 等. 小麦细胞分裂素氧化/脱氢酶基因(TaCKX5)的克隆及其染色体定位[J]. 中国农业科学, 2008, 41(3):636-642.
[24]Andersen J R, Lbberstedt T. Functional marks in plants [J]. Trends in Plant Science, 2003, 8:554-560.
[25]Peng J, Ronin Y, Fahima T, et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat [J]. Proceedings of the National Academy of Sciences, 2003, 100: 2489-2494.
[26]Brner A, Schumann E, Fürste A, et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2002, 105: 921-936.
[27]Jantasuriyarat C, Vales M I, Watson C J W, et al. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2004, 108: 261-273.
[28]Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat [J]. Theoretical and Applied Genetics, 2000, 101: 1114-1121.
[9]Lu B, Yuan Y, Zhang C, et al. Modulation of key enzymes involved in ammonium assimilation and carbon metabolism by low temperature in rice (Oryza sativa L.) roots [J]. Plant Science, 2005, 169:295-302.
[10]Qiu X, Xie W, Lian X, et al. Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation [J]. Plant Cell Reports, 2009, 28: 1115-1126.
[11]Tercé-Laforgue T, Bedu M, Dargel-Grafin C, et al. Resolving the role of plant glutamate dehydrogenase: II. physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously [J]. Plant and Cell Physiology, 2013, 54: 1635-1647.
[12]Hirel B, Bertin P, Quilleré I, et al. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize [J]. Plant Physiology, 2001, 125: 1258-1270.
[13]Limami A M, Rouillon C, Glevarec G, et al. Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase [J]. Plant Physiology, 2002, 130: 1860-1870.
[14]Obara M, Kajiura M, Fukuta Y, et al. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.) [J]. Journal of Experimental Botany, 2001, 52: 1209-1217.
[15]Bagge M, Xia X, Lübberstedt T. Functional markers in wheat [J]. Current Opinion in Plant Biology, 2007, 10: 211-216.
[16]乔麟轶, 张磊, 张文萍, 等. 小麦生长素结合基因TaABP1-D的克隆、功能标记开发及其与株高的关联[J]. 作物学报, 2012, 38(11): 2034-2041.
[17]刘亚男. 普通小麦细胞壁转化酶基因TaCwi-Al的表达和直立密穗(DEP1)基因克隆与功能标记开发[D].北京:中国农业科学院, 2012.
[18]Devos K M, Gale M D. The use of random amplified polymorphic DNA markers in wheat [J]. Theoretical and Applied Genetics, 1992, 84: 567-572.
[19]Haudry A, Cenci A, Ravel C, et al. Grinding up wheat: a massive loss of nucleotide diversity since domestication[J]. Mol. Biol. Evol., 2007, 24: 1506-1517.
[20]Lazo G R, Chao S, Hummel D D, et al. Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.) EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map [J]. Genetics, 2004, 168: 585-593.
[21]郝丽芳, 余春梅, 李斌, 等. 普通小麦中一氧化氮相关因子 (TaNOA) 编码基因的克隆和分子生物学分析[J]. 生物工程学报, 2010, 26: 48-56.
[22]李亚青,毛新国,赵宝存,等. 小麦糖原合成酶激酶基因(TaGSK1)的染色体定位[J]. 华北农学报,2006,21(5):39-41.
[23]张磊, 张宝石, 周荣华, 等. 小麦细胞分裂素氧化/脱氢酶基因(TaCKX5)的克隆及其染色体定位[J]. 中国农业科学, 2008, 41(3):636-642.
[24]Andersen J R, Lbberstedt T. Functional marks in plants [J]. Trends in Plant Science, 2003, 8:554-560.
[25]Peng J, Ronin Y, Fahima T, et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat [J]. Proceedings of the National Academy of Sciences, 2003, 100: 2489-2494.
[26]Brner A, Schumann E, Fürste A, et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2002, 105: 921-936.
[27]Jantasuriyarat C, Vales M I, Watson C J W, et al. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2004, 108: 261-273.
[28]Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat [J]. Theoretical and Applied Genetics, 2000, 101: 1114-1121.