APP下载

基于沉降测量的管道力学性状分析及误差评估

2014-10-27李素贞彭兴华李新亮

湖南大学学报·自然科学版 2014年9期

李素贞 彭兴华 李新亮

摘要:结合管道沿线沉降观测和间接平差理论,提出了基于弹性地基梁挠曲微分方程通解函数式的拟合模型,用以获得管道的连续挠曲线,进而实现管道结构的力学性状分析和安全评估.针对拟合误差的影响,采用误差传递理论进行挠曲方程及内力解算值的精度评定.通过集中和均布荷载下管道变形拟合的算例分析对比了地基梁通解函数式拟合模型和传统的多项式拟合模型.结合某道路下天然气管道在邻近超高层建筑施工过程中的沉降监测探讨了本文方法的有效性.结果表明:与多项式拟合模型相比,本文提出的模型在埋地管道挠曲线重构及应力解算方面精度更高,可用于高层结构施工期间周边埋地管道的力学性状分析及安全评价.

关键词:埋地管道;沉降测量;平差理论;误差评估;弹性地基梁

中图分类号:TU990.3 文献标识码:A

Abstract:Based on Winkler foundation model and indirect adjustment theory, this paper proposed a fitting model to reconstruct the deflection curve for the structural performance evaluation of the buried pipeline by using multipoint subsidence measurements. According to error propagation theory, the precision of the derived deflection and the stress of the pipeline structure were investigated. Two analytical examples of the pipelines under a concentrated load and a uniformly distributed load were given, which demonstrate that the proposed model has achieved greater accuracy in the estimation of pipeline deflection and stress by comparing with the conventional polynomial model. Combined with the application to a practical project regarding a buried gas pipeline in the vicinity of the construction site of a highrise building, the effectiveness of the fitting model in the stress analysis and safety evaluation of buried pipeline was verified as well.

Key words:buried pipeline; subsidence measurement; adjustment theory; error assessment; winkler foundation model

管网系统是保证社会经济发展和人民生活的重要生命线工程.埋地管道上受到直接或间接作用的荷载主要有管道结构的自重、覆土压力、管内流体的重量等恒载以及车辆荷载、地面荷载\[1\]、温度变化所引起的胀缩力、管道内压、上浮荷载、地震荷载、城市建设施工干扰等活荷载.城市埋地管道受高层建设或基坑开挖引起土体不均匀沉降而导致的破坏现象较明显\[2-3\].这些荷载导致管道的沉降变形,沿管道的整体均匀沉降将不会引起管道的安全破坏,但局部沉降变形将严重威胁管道的安全运行\[4\].

埋地管道沉降变形的监测手段可有沉降测量、应变片测量、倾角测量等,其中基于管道沉降位移的测量值来评估管道的安全状况是较为直接简便的方法.地震、沉降等土体移动引起的管道内力的计算方法已经有很多种\[5-7\].项式Limura根据在管道三点处的沉降位移测量值来线性插值求取这三点间管道的沉降位移,进而结合Winkler地基梁理论求解管道内力\[8\].高田至郎等根据弹性地基梁理论对受到地基沉降影响的4种情形下埋地管线进行模型化处理,提出了计算管线最大弯曲变形、接头转角、最大接头伸长量的设计公式\[9\].基于有限元方法的埋地管道变形受力分析为埋地管道的设计提供了先验的判断评估\[10\].李大勇等考虑了基坑围护结构、土体与地下管线的耦合作用,建立了地下管线、土体以及基坑围护结构为一体的三维有限元模型,分析了地下管线的管材、埋深、距离基坑远近、下卧层土质、管道弹性模量与周围土体弹性模量比等因素对地下管线的影响规律,并总结、归纳了地下管线的安全性判别方法及地下管线的工程监测和保护措施\[11-12\].而考虑到埋地管道变形测量误差对变形曲线拟合的影响的研究甚少,Orynyak等对埋地管道变形测量的误差做了一些讨论\[13\],但对测量误差到内力计算的误差传递未明确.

5结论

基于管道沿线各点的沉降观测,本文提出了结合弹性地基梁模型的平差拟合算法,用以获得连续的管道挠曲方程,进而实现管道结构的力学性状分析和安全评估.本文主要结论如下:

1)根据埋地管道在集中和均布荷载作用下挠曲线的拟合和应变解算的误差评估,地基梁挠曲方程通解式拟合模型比多项式拟合模型精度高,并且适用于管道大沉降下的挠曲线拟合.

2)在管道受集中荷载或均布荷载作用下,地基梁挠曲方程通解拟合模型不具有拟合模型误差,故在对管道沉降位移到其挠曲线的拟合过程中,可仅考虑沉降位移测量误差的影响.

3)在本工程状况下,地基梁挠曲方程通解中特解y1(x)取二次多项式(m=2)对拟合周边管道的挠曲线并用于管道结构力学性状分析的最佳拟合次数.

参考文献

[1]阙小平,李平木.埋地刚性管道上的地面荷载计算\[J\].混凝土与水泥制品,2010,26(3):31.

QUE Xiaoping, LI Pingmu. Ground load calculation of buried rigid pipes\[J\]. China Concerete and Cement Products, 2010,26(3):31.(In Chinese)

\[2\]BRANKO Glisic, YAO Yao. Fiber optic method for health assessment of pipelines subjected to earthquakeinduced ground movement\[J\].Structural Health Monitoring, 2012,11(6): 696-711.

\[3\]LI Suzhen, ZHAO ming. Structural health monitoring of continuously welded underground pipelines based on quasidistributed wireless inclinometers\[C\]//Research and Applications in Structural Engineering, Mechanics and Computation ,SEMC 2013, Capa Town, South Africa, 2013:2205-2209.

\[4\]HYOUNGSIK kim, WOOSIK kim.Analysis of stresses on buried natural gas pipelinne subjected to ground subsidence\[C\]//International Pipeline ConferenceProceedings of the International Pipeline Conference, IPC.Calgary, Can, 1998,V2:749-756.

\[5\]SAITO K, NISHIO N, KATAYAMA T. Recommended practice for earthquakeresistant design medium and lowpressure gas pipelines\[C\]//Earthquake Behavior and Safety of Oil and Gas Storage Facilities, Buried Pipelines and Equipment, Presented at 1983 International Symposium on Lifeline Earthquake Engineering at the 4th National Congress on Pressure Vessel and Piping Technnology. Portland, OR,USA, 1983:340-348.

\[6\]OISHI H. Considerations on behavior of underground pipelines caused by ground settlement\[C\]//Proc JSCE 1985.Japan,1985:379-386.

\[7\]TANABLE K,TAKADA S. Design formulae of buried pipes subjected to large ground settlement and their application\[C\]// Proc JSCE 1986.Japan,1986:593-602.

\[8\]LIMURA S. Simplified mechanical model for evaluating stress in pipeline subjected to settlement\[J\]. Construction and Building Materials,2004,18:469-479.

\[9\]高田至郎. 受地基沉降影响的地下管线的设计公式及应用\[C\]//地下管线抗震.北京:学术书刊出版社,1990:374-390.

SHIRO Takada. Formulation and application of underground pipeline design influenced by foundation settlement \[C\]// Seismic Design of Underground Pipeline. Beijing: Academic Press,1990:374-390.(In Chinese)

\[10\]李新慧. 天然气埋地管道沉降的有限元分析\[J\]. 岩土工程学报,2013,S1:259-263.

LI Xinhui. Finite element analysis of settlement of buried natural gas pipelines\[J\]. Chinese Journal of Geotechnical Engineering, 2013,S1:259-263.(In Chinese)

\[11\]李大勇,龚晓南,张土乔. 软土地基深基坑周围地下管线保护措施的数值模拟\[J\].岩土工程学报,2001,23(6):736-740.

LI Dayong,GONG Xiaonan, ZHANG Tuqiao. Numerical stimulation of the buried pipelines protection adjacent to deep excavation\[J\] . Chinese Journal of Geotechnical Engineering,2001, 23(6): 736-740. (In Chinese)

\[12\]李大勇,龚晓南,张土乔. 软土地基深基坑工程邻近柔性接口地下管线的性状分析\[J\],土木工程学报,2003,36(2):77-80.

LI Dayong,GONG Xiaonan, ZHANG Tuqiao. Response of jointed ductile pipeline to deep excavation in soft soil\[J\]. China Civil Engineering Journal,2003, 36 (2): 77-80. (In Chinese)

\[13\]ORYNYAK L V, LOKHMAN L V.Determination of curve characteristics by its discrete points measured with an error and its application to stress analysis for buried pipeline\[J\].Strength of Materials, 2012,44(3):268-284.

\[14\]王穂辉.误差理论与测量平差\[M\].上海:同济大学出版社,2010:115-122.

3)在本工程状况下,地基梁挠曲方程通解中特解y1(x)取二次多项式(m=2)对拟合周边管道的挠曲线并用于管道结构力学性状分析的最佳拟合次数.

参考文献

[1]阙小平,李平木.埋地刚性管道上的地面荷载计算\[J\].混凝土与水泥制品,2010,26(3):31.

QUE Xiaoping, LI Pingmu. Ground load calculation of buried rigid pipes\[J\]. China Concerete and Cement Products, 2010,26(3):31.(In Chinese)

\[2\]BRANKO Glisic, YAO Yao. Fiber optic method for health assessment of pipelines subjected to earthquakeinduced ground movement\[J\].Structural Health Monitoring, 2012,11(6): 696-711.

\[3\]LI Suzhen, ZHAO ming. Structural health monitoring of continuously welded underground pipelines based on quasidistributed wireless inclinometers\[C\]//Research and Applications in Structural Engineering, Mechanics and Computation ,SEMC 2013, Capa Town, South Africa, 2013:2205-2209.

\[4\]HYOUNGSIK kim, WOOSIK kim.Analysis of stresses on buried natural gas pipelinne subjected to ground subsidence\[C\]//International Pipeline ConferenceProceedings of the International Pipeline Conference, IPC.Calgary, Can, 1998,V2:749-756.

\[5\]SAITO K, NISHIO N, KATAYAMA T. Recommended practice for earthquakeresistant design medium and lowpressure gas pipelines\[C\]//Earthquake Behavior and Safety of Oil and Gas Storage Facilities, Buried Pipelines and Equipment, Presented at 1983 International Symposium on Lifeline Earthquake Engineering at the 4th National Congress on Pressure Vessel and Piping Technnology. Portland, OR,USA, 1983:340-348.

\[6\]OISHI H. Considerations on behavior of underground pipelines caused by ground settlement\[C\]//Proc JSCE 1985.Japan,1985:379-386.

\[7\]TANABLE K,TAKADA S. Design formulae of buried pipes subjected to large ground settlement and their application\[C\]// Proc JSCE 1986.Japan,1986:593-602.

\[8\]LIMURA S. Simplified mechanical model for evaluating stress in pipeline subjected to settlement\[J\]. Construction and Building Materials,2004,18:469-479.

\[9\]高田至郎. 受地基沉降影响的地下管线的设计公式及应用\[C\]//地下管线抗震.北京:学术书刊出版社,1990:374-390.

SHIRO Takada. Formulation and application of underground pipeline design influenced by foundation settlement \[C\]// Seismic Design of Underground Pipeline. Beijing: Academic Press,1990:374-390.(In Chinese)

\[10\]李新慧. 天然气埋地管道沉降的有限元分析\[J\]. 岩土工程学报,2013,S1:259-263.

LI Xinhui. Finite element analysis of settlement of buried natural gas pipelines\[J\]. Chinese Journal of Geotechnical Engineering, 2013,S1:259-263.(In Chinese)

\[11\]李大勇,龚晓南,张土乔. 软土地基深基坑周围地下管线保护措施的数值模拟\[J\].岩土工程学报,2001,23(6):736-740.

LI Dayong,GONG Xiaonan, ZHANG Tuqiao. Numerical stimulation of the buried pipelines protection adjacent to deep excavation\[J\] . Chinese Journal of Geotechnical Engineering,2001, 23(6): 736-740. (In Chinese)

\[12\]李大勇,龚晓南,张土乔. 软土地基深基坑工程邻近柔性接口地下管线的性状分析\[J\],土木工程学报,2003,36(2):77-80.

LI Dayong,GONG Xiaonan, ZHANG Tuqiao. Response of jointed ductile pipeline to deep excavation in soft soil\[J\]. China Civil Engineering Journal,2003, 36 (2): 77-80. (In Chinese)

\[13\]ORYNYAK L V, LOKHMAN L V.Determination of curve characteristics by its discrete points measured with an error and its application to stress analysis for buried pipeline\[J\].Strength of Materials, 2012,44(3):268-284.

\[14\]王穂辉.误差理论与测量平差\[M\].上海:同济大学出版社,2010:115-122.

3)在本工程状况下,地基梁挠曲方程通解中特解y1(x)取二次多项式(m=2)对拟合周边管道的挠曲线并用于管道结构力学性状分析的最佳拟合次数.

参考文献

[1]阙小平,李平木.埋地刚性管道上的地面荷载计算\[J\].混凝土与水泥制品,2010,26(3):31.

QUE Xiaoping, LI Pingmu. Ground load calculation of buried rigid pipes\[J\]. China Concerete and Cement Products, 2010,26(3):31.(In Chinese)

\[2\]BRANKO Glisic, YAO Yao. Fiber optic method for health assessment of pipelines subjected to earthquakeinduced ground movement\[J\].Structural Health Monitoring, 2012,11(6): 696-711.

\[3\]LI Suzhen, ZHAO ming. Structural health monitoring of continuously welded underground pipelines based on quasidistributed wireless inclinometers\[C\]//Research and Applications in Structural Engineering, Mechanics and Computation ,SEMC 2013, Capa Town, South Africa, 2013:2205-2209.

\[4\]HYOUNGSIK kim, WOOSIK kim.Analysis of stresses on buried natural gas pipelinne subjected to ground subsidence\[C\]//International Pipeline ConferenceProceedings of the International Pipeline Conference, IPC.Calgary, Can, 1998,V2:749-756.

\[5\]SAITO K, NISHIO N, KATAYAMA T. Recommended practice for earthquakeresistant design medium and lowpressure gas pipelines\[C\]//Earthquake Behavior and Safety of Oil and Gas Storage Facilities, Buried Pipelines and Equipment, Presented at 1983 International Symposium on Lifeline Earthquake Engineering at the 4th National Congress on Pressure Vessel and Piping Technnology. Portland, OR,USA, 1983:340-348.

\[6\]OISHI H. Considerations on behavior of underground pipelines caused by ground settlement\[C\]//Proc JSCE 1985.Japan,1985:379-386.

\[7\]TANABLE K,TAKADA S. Design formulae of buried pipes subjected to large ground settlement and their application\[C\]// Proc JSCE 1986.Japan,1986:593-602.

\[8\]LIMURA S. Simplified mechanical model for evaluating stress in pipeline subjected to settlement\[J\]. Construction and Building Materials,2004,18:469-479.

\[9\]高田至郎. 受地基沉降影响的地下管线的设计公式及应用\[C\]//地下管线抗震.北京:学术书刊出版社,1990:374-390.

SHIRO Takada. Formulation and application of underground pipeline design influenced by foundation settlement \[C\]// Seismic Design of Underground Pipeline. Beijing: Academic Press,1990:374-390.(In Chinese)

\[10\]李新慧. 天然气埋地管道沉降的有限元分析\[J\]. 岩土工程学报,2013,S1:259-263.

LI Xinhui. Finite element analysis of settlement of buried natural gas pipelines\[J\]. Chinese Journal of Geotechnical Engineering, 2013,S1:259-263.(In Chinese)

\[11\]李大勇,龚晓南,张土乔. 软土地基深基坑周围地下管线保护措施的数值模拟\[J\].岩土工程学报,2001,23(6):736-740.

LI Dayong,GONG Xiaonan, ZHANG Tuqiao. Numerical stimulation of the buried pipelines protection adjacent to deep excavation\[J\] . Chinese Journal of Geotechnical Engineering,2001, 23(6): 736-740. (In Chinese)

\[12\]李大勇,龚晓南,张土乔. 软土地基深基坑工程邻近柔性接口地下管线的性状分析\[J\],土木工程学报,2003,36(2):77-80.

LI Dayong,GONG Xiaonan, ZHANG Tuqiao. Response of jointed ductile pipeline to deep excavation in soft soil\[J\]. China Civil Engineering Journal,2003, 36 (2): 77-80. (In Chinese)

\[13\]ORYNYAK L V, LOKHMAN L V.Determination of curve characteristics by its discrete points measured with an error and its application to stress analysis for buried pipeline\[J\].Strength of Materials, 2012,44(3):268-284.

\[14\]王穂辉.误差理论与测量平差\[M\].上海:同济大学出版社,2010:115-122.