考虑节点非弹性变形的RC框架地震反应分析
2014-10-27杨红赵雯桐莫林辉李波
杨红 赵雯桐 莫林辉 李波
摘要:钢筋混凝土梁柱组合体试验结果表明节点内纵筋滑移和节点剪切变形对组合体的抗震性能有明显影响,但框架的非弹性地震反应分析一般忽略了节点非弹性变形的影响.为了模拟节点区非弹性变形的影响,在纤维模型基础上采用在梁端附加零长度截面单元的方法,并通过σs本构模型考虑节点内梁纵筋粘结滑移,以及通过σsslip-shear本构模型同时考虑节点内纵筋滑移和节点剪切变形.考察了典型平面框架在罕遇地震下的非线性反应,对比分析了节点非弹性变形对框架整体和局部反应的影响.结果表明,考虑节点非弹性变形之后结构的最大顶点位移、最大层间位移角将增大或仅略有变化,梁端、柱端塑性铰数量将减少,梁、柱的转角延性需求总体而言将减小;地震作用下框架节点距离剪切失效尚有一定安全储备.框架地震反应大时忽略节点非弹性变形将导致明显误差,地震反应较小时可采用不考虑节点非弹性变形的常规有限元分析模型.
关键词:钢筋混凝土;节点;纵筋滑移;剪切变形;框架结构
中图分类号:TU375.4;TU313.3 文献标识码:A
Abstract: Experiment results of RC beamcolumn subassemblage show that the slippage of the longitudinal bar within joint and shear deformation of joint have significant influence on the seismic behavior of the subassemblage, but this kind of joint inelastic deformations has always been ignored in the seismic response analysis of RC frames. In order to simulate the effect of the inelastic deformations of beamcolumn joints, a zerolength section element was combined to the ends of the beam based on the fiber model. Longitudinal bar slippage was modeled with stressslippage constitutive model, while stressequivalent slippage constitutive model was adopted to simulate longitudinal bar slippage and joint shear deformation simultaneously. Nonlinear responses of a typical RC planar frame under rare earthquake excitations were investigated, and the effect of joint inelastic deformations on the global and local responses of the frame was analyzed contrastively. The results show that the maximum top displacements and maximum interstory drift ratios increase or change slightly, the quantities of the plastic hinge of the beam and the column ends decrease, and the rotation ductility demand of the beam and the column decreases as a whole when joint inelastic deformations are considered. There is a certain safety margin for the joints of the frame to avoid shear failure. Ignoring joint inelastic deformations will result in significant errors if the seismic response of RC frame is large, and the ordinary finite element model of ignoring joint inelastic deformations can be adopted if the seismic response of the structure is relatively small.
Key words: reinforced concrete; joint; longitudinal bar slippage; shear deformation; frame structure
节点区非弹性变形主要包括节点内梁纵筋粘结滑移和节点剪切变形.钢筋混凝土梁柱组合体试验结果表明\[1\],节点非弹性变形受轴压比、剪压比、配箍特征值等多个节点参数综合影响,规律较为复杂;节点非弹性变形在组合体受力后期会变得越来越明显,临近节点剪切失效时由节点非弹性变形所导致的梁端附加转角可达梁端总转角的50%以上.由于框架中各单元的关联方式更复杂、地震作用与低周反复试验的加载方式存在差别等,节点非弹性变形对结构强震非弹性反应的影响规律并不与节点试验完全相同.
目前对结构进行非弹性动力反应分析一般忽略了节点非弹性变形的影响,其原因既是国内外尚缺乏意见较为统一的节点非弹性变形滞回模型,同时当节点区纵筋滑移、剪切变形分别采用独立的非弹性单元模拟时增加了有限元建模的复杂性.
在作者已建立的可同时考虑节点内纵筋滑移和节点剪切变形恢复力模型的基础上,采用能与纤维模型良好对接的节点变形计算模型,分析了节点非弹性变形对钢筋混凝土框架强震反应的影响,并通过与节点试验结果进行对比,验证了节点区非弹性变形简化模型化方法用于结构整体的可行性.
1节点非弹性变形的简化模型化方法
常规的节点非弹性变形模型化方法是采用独立的非弹性单元分别模拟节点内纵筋滑移、节点剪切变形.Filippou等\[2\]、杨红等\[3\]通过在梁端附加专门的非弹性转动弹簧模拟节点内梁纵筋滑移的影响,并分析了纵筋滑移对构件、结构地震反应的影响;Fernandes等\[4\]采用相同方法模拟了梁纵筋采用光圆钢筋时滑移对节点受力性能的影响;上述模型化方法均未考虑与纤维模型的协调.高文生\[5\]在纤维模型的基础上,通过在梁端附加单独考虑纵筋滑移的零长度截面单元模拟了节点内纵筋滑移的影响,其不足之处在于所采用的滑移本构模型是基于单根钢筋的拉拔试验而得到,无法体现纵筋在节点内的复杂受力、锚固环境.以上分析均未考虑节点剪切变形的影响.王连坤等\[6\]采用16结点壳单元和子结构法考虑了钢框架节点区剪切变形的影响,但节点区仍有4~6个结点.Favvata等\[7\]和Park等\[8\]均采用了在边节点处增设非线性转动弹簧的方法,并通过弯矩转角关系综合考虑了节点剪切变形和梁纵筋滑移的影响,但该方法仅适用于边节点,且不能考虑柱端屈服的受力情况.Lowes等\[9\]和Mitra等\[10\]将节点核心区等效为二维非弹性应变场,并用1个剪切分量和4个界面剪切分量分别模拟节点核心区的非弹性剪切效应和节点周边界面传递剪力性能的退化,同时采用8个非弹性单元并按与文献\[5\]类似的方法模拟纵筋滑移,这种“超级节点”力学模型复杂、考虑因素全面,适用于节点局部受力的模拟;但是当用于整体结构分析时由于节点编号复杂、模型参数确定困难、计算量大幅度增加、迭代收敛困难等直接影响了实际应用.因此,简便、合理的节点非弹性变形模型化方法对结构强震分析有重要意义.
本文采用的方法以纤维模型为基础.以图1所示中间节点为例,其中用非线性杆单元(可采用基于纤维模型的各种非线性单元力学模型)模拟构件自身的弯曲效应,非线性杆单元端部附加的零长度截面单元可仅考虑节点内纵筋滑移的影响或者同时考虑节点内纵筋滑移和节点剪切变形的影响.该零长度截面单元与相邻杆单元端部截面的配筋、截面尺寸相同,且纵筋、混凝土在截面上的纤维划分方法也均相同,但与非线性杆单元各积分控制截面的钢筋纤维均采用钢筋的单轴应力应变(σε)材料本构模型不同的是,零长度截面单元的钢筋纤维的本构模型采用钢筋应力滑移(σs)模型、应力等效滑移(σsslipshear)本构模型\[11\],其中s,sslipshear分别代表构件端部纵筋相对于节点表面的滑移量、等效滑移量.本文建立的上述模型化方法与前述其他方法的区别在于其力学模型简单、节点单独编号少、计算量增加少,且σsslipshear本构模型可同时考虑节点区两种非弹性变形的影响.
5结论
根据典型平面框架在7条地震波作用下分别采用3种不同的考虑节点非弹性变形影响的计算模型所得的非弹性反应,得到以下结论.
1) 框架非弹性地震反应不大时,不考虑节点非弹性变形的常规有限元模型所得的结构最大顶点水平位移、最大层间位移角误差小.当框架非弹性地震反应较大时,不考虑节点内梁纵筋滑移及节点剪切变形会明显低估结构的最大顶点水平位移、最大层间位移角.
2) 考虑节点内梁纵筋滑移及节点剪切变形后,梁、柱的转角延性需求呈总体性减小的特征;但与梁柱组合体试验结果不同的规律是,框架中少量构件的转角延性需求有明显增大的现象.
3) 按我国现行规范设计的配置HRB400钢筋的8度0.2g区二级抗震框架,即使地震反应较大,非线性变形最大的节点距离节点剪切失效仍有一定的安全储备.
4) 当按常规模型计算所得最大层间位移角不大时,可近似忽略节点非弹性变形的影响;当常规分析方法所得最大层间位移角较大时,不考虑节点非弹性变形的计算结果误差较大,会明显估低部分构件的转角延性需求和最大层间位移角.
5) 上述节点非弹性变形对框架强震反应的影响规律有待整体框架的试验验证.
参考文献
[1]傅剑平.钢筋混凝土框架节点的抗震性能与设计方法\[D\] .重庆:重庆大学土木工程学院,2002:11-67.
FU Jianping. Seismic behaviour and design of joints in a reinforced concrete frame \[D\] .Chongqing: College of Civil Engineering, Chongqing University, 2002:11-67. (In Chinese)
[2]FILIPPOU F C, DAMBRISI A, ISSA A. Effects of reinforcement slip on hysteretic behavior of reinforced concrete frame members\[J\]. ACI Structural Journal, 1999, 96(3):13-27.
[3]杨红,白绍良.考虑节点内纵筋粘结滑移的结构弹塑性地震反应 \[J\].土木工程学报,2004,37(5):17-22.
YANG Hong, BAI Shaoliang. Elastoplastic earthquake response of structure considering slippage between longitudinal steel bar and concrete of beam in nodes\[J\]. China Civil Engineering Journal, 2004,37(5):17-22. (In Chinese)
[4]FERNANDES C, VARUM H, COSTA A. Importance of the bondslip mechanism in the numerical simulation of the cyclic response of RC elements with plain reinforcing bars\[J\]. Engineering Structures, 2013,56(11):396-406.
[5]高文生.考虑钢筋粘结滑移影响的钢筋混凝土框架地震反应分析\[D\] .重庆:重庆大学土木工程学院,2008:37-53.
GAO Wensheng. The seismic responses analysis of RC frame including bondslip \[D\] . Chongqing: College of Civil Engineering, Chongqing University, 2008:37-53. (In Chinese)
[6]王连坤,郝际平,张俊峰,等.钢框架分析中考虑结点区变形的子结构法\[J\].湖南大学学报:自然科学版,2008,38(4):17-22.
WANG Liankun, HAO Jiping, ZHANG Junfeng, et al. Substructure method considering panel zone deformation in the steel frame\[J\]. Journal of Hunan University: Natural Sciences, 2008,38(4):17-22.(In Chinese)
[7]FAVVATA M J, IZZUDDIN B A, KARAYANNIS C G. Modelling exterior beamcolumn joints for seismic analysis of RC frame structures\[J\]. Earthquake Engineering and Structure Dynamics, 2008,37(13):1527-1548.
[8]PARK K M. Simulation of reinforced concrete frames with nonductile beamcolumn joints\[J\]. Earthquake Spectra, 2013, 29(1):233-257.
[9]LOWES L N, ALTOONTASH A. Modeling reinforced concrete beamcolumn joints subjected to cyclic loading\[J\]. Journal of Structural Engineering, ASCE, 2003,129(12):1686-1697.
[10]MITRA N, LOWES L N. Evaluation, calibration, and verification of a reinforced concrete beamcolumn joint model\[J\]. Journal of Structural Engineering, ASCE, 2007,133(1):105-120.
[11]杨红,莫林辉,陈进可,等.钢筋混凝土梁柱节点区非弹性变形的改进模型研究\[J\].建筑结构学报,2014,35(3):128-137.
YANG Hong, MO Linhui, CHEN Jinke, et al. Study on modified models for inelastic deformations of reinforced concrete beamcolumn joints\[J\]. Journal of Building Structures, 2014,35(3):128-137. (In Chinese)
[12]MAZZONI S, MCKENNA F, SCOTT M H, et al. Open system for earthquake engineering simulation users commandlanguage manual\[EB/OL\].http://opensees.berkeley.edu/OpenSees/manuals/usermanual/,2009-5-2/2013-8-20.
[13]KENT D C, PARK R. Flexural members with confined concrete\[J\]. Journal of Structural Engineering, ASCE, 1971,97(ST7):1969-1990.
[14]SCOTT B D, PARK R, PRIESTLEY M J N. Stressstrain behavior of concrete confined by overlapping hoops at low and high strain rates\[J\]. ACI Journal, 1982,79(1):13-27.
[15]FILIPPOU F C, POPOV E P, BERTERO V V. Nonlinear static and dynamic analysis of concrete subassemblages\[R\]. Berkeley: University of California at Berkeley, EERC Report No. 92/08, 1992.
[16]LIMKATANYU S, SPACONE E. Effects of reinforcement slippage on the nonlinear response under cyclic loadings of RC frame structures\[J\]. Earthquake Engineering and Structure Dynamics, 2003,32:2407-2424.
[4]FERNANDES C, VARUM H, COSTA A. Importance of the bondslip mechanism in the numerical simulation of the cyclic response of RC elements with plain reinforcing bars\[J\]. Engineering Structures, 2013,56(11):396-406.
[5]高文生.考虑钢筋粘结滑移影响的钢筋混凝土框架地震反应分析\[D\] .重庆:重庆大学土木工程学院,2008:37-53.
GAO Wensheng. The seismic responses analysis of RC frame including bondslip \[D\] . Chongqing: College of Civil Engineering, Chongqing University, 2008:37-53. (In Chinese)
[6]王连坤,郝际平,张俊峰,等.钢框架分析中考虑结点区变形的子结构法\[J\].湖南大学学报:自然科学版,2008,38(4):17-22.
WANG Liankun, HAO Jiping, ZHANG Junfeng, et al. Substructure method considering panel zone deformation in the steel frame\[J\]. Journal of Hunan University: Natural Sciences, 2008,38(4):17-22.(In Chinese)
[7]FAVVATA M J, IZZUDDIN B A, KARAYANNIS C G. Modelling exterior beamcolumn joints for seismic analysis of RC frame structures\[J\]. Earthquake Engineering and Structure Dynamics, 2008,37(13):1527-1548.
[8]PARK K M. Simulation of reinforced concrete frames with nonductile beamcolumn joints\[J\]. Earthquake Spectra, 2013, 29(1):233-257.
[9]LOWES L N, ALTOONTASH A. Modeling reinforced concrete beamcolumn joints subjected to cyclic loading\[J\]. Journal of Structural Engineering, ASCE, 2003,129(12):1686-1697.
[10]MITRA N, LOWES L N. Evaluation, calibration, and verification of a reinforced concrete beamcolumn joint model\[J\]. Journal of Structural Engineering, ASCE, 2007,133(1):105-120.
[11]杨红,莫林辉,陈进可,等.钢筋混凝土梁柱节点区非弹性变形的改进模型研究\[J\].建筑结构学报,2014,35(3):128-137.
YANG Hong, MO Linhui, CHEN Jinke, et al. Study on modified models for inelastic deformations of reinforced concrete beamcolumn joints\[J\]. Journal of Building Structures, 2014,35(3):128-137. (In Chinese)
[12]MAZZONI S, MCKENNA F, SCOTT M H, et al. Open system for earthquake engineering simulation users commandlanguage manual\[EB/OL\].http://opensees.berkeley.edu/OpenSees/manuals/usermanual/,2009-5-2/2013-8-20.
[13]KENT D C, PARK R. Flexural members with confined concrete\[J\]. Journal of Structural Engineering, ASCE, 1971,97(ST7):1969-1990.
[14]SCOTT B D, PARK R, PRIESTLEY M J N. Stressstrain behavior of concrete confined by overlapping hoops at low and high strain rates\[J\]. ACI Journal, 1982,79(1):13-27.
[15]FILIPPOU F C, POPOV E P, BERTERO V V. Nonlinear static and dynamic analysis of concrete subassemblages\[R\]. Berkeley: University of California at Berkeley, EERC Report No. 92/08, 1992.
[16]LIMKATANYU S, SPACONE E. Effects of reinforcement slippage on the nonlinear response under cyclic loadings of RC frame structures\[J\]. Earthquake Engineering and Structure Dynamics, 2003,32:2407-2424.
[4]FERNANDES C, VARUM H, COSTA A. Importance of the bondslip mechanism in the numerical simulation of the cyclic response of RC elements with plain reinforcing bars\[J\]. Engineering Structures, 2013,56(11):396-406.
[5]高文生.考虑钢筋粘结滑移影响的钢筋混凝土框架地震反应分析\[D\] .重庆:重庆大学土木工程学院,2008:37-53.
GAO Wensheng. The seismic responses analysis of RC frame including bondslip \[D\] . Chongqing: College of Civil Engineering, Chongqing University, 2008:37-53. (In Chinese)
[6]王连坤,郝际平,张俊峰,等.钢框架分析中考虑结点区变形的子结构法\[J\].湖南大学学报:自然科学版,2008,38(4):17-22.
WANG Liankun, HAO Jiping, ZHANG Junfeng, et al. Substructure method considering panel zone deformation in the steel frame\[J\]. Journal of Hunan University: Natural Sciences, 2008,38(4):17-22.(In Chinese)
[7]FAVVATA M J, IZZUDDIN B A, KARAYANNIS C G. Modelling exterior beamcolumn joints for seismic analysis of RC frame structures\[J\]. Earthquake Engineering and Structure Dynamics, 2008,37(13):1527-1548.
[8]PARK K M. Simulation of reinforced concrete frames with nonductile beamcolumn joints\[J\]. Earthquake Spectra, 2013, 29(1):233-257.
[9]LOWES L N, ALTOONTASH A. Modeling reinforced concrete beamcolumn joints subjected to cyclic loading\[J\]. Journal of Structural Engineering, ASCE, 2003,129(12):1686-1697.
[10]MITRA N, LOWES L N. Evaluation, calibration, and verification of a reinforced concrete beamcolumn joint model\[J\]. Journal of Structural Engineering, ASCE, 2007,133(1):105-120.
[11]杨红,莫林辉,陈进可,等.钢筋混凝土梁柱节点区非弹性变形的改进模型研究\[J\].建筑结构学报,2014,35(3):128-137.
YANG Hong, MO Linhui, CHEN Jinke, et al. Study on modified models for inelastic deformations of reinforced concrete beamcolumn joints\[J\]. Journal of Building Structures, 2014,35(3):128-137. (In Chinese)
[12]MAZZONI S, MCKENNA F, SCOTT M H, et al. Open system for earthquake engineering simulation users commandlanguage manual\[EB/OL\].http://opensees.berkeley.edu/OpenSees/manuals/usermanual/,2009-5-2/2013-8-20.
[13]KENT D C, PARK R. Flexural members with confined concrete\[J\]. Journal of Structural Engineering, ASCE, 1971,97(ST7):1969-1990.
[14]SCOTT B D, PARK R, PRIESTLEY M J N. Stressstrain behavior of concrete confined by overlapping hoops at low and high strain rates\[J\]. ACI Journal, 1982,79(1):13-27.
[15]FILIPPOU F C, POPOV E P, BERTERO V V. Nonlinear static and dynamic analysis of concrete subassemblages\[R\]. Berkeley: University of California at Berkeley, EERC Report No. 92/08, 1992.
[16]LIMKATANYU S, SPACONE E. Effects of reinforcement slippage on the nonlinear response under cyclic loadings of RC frame structures\[J\]. Earthquake Engineering and Structure Dynamics, 2003,32:2407-2424.