APP下载

小学数学分数除法与实际问题间的障碍祛除

2014-10-21周俊

启迪与智慧·教育版 2014年12期
关键词:线段小明数量

周俊

分数除法内容在课程目标制定方面,应当以学生实际理解能力为前提,不管是理论授课,还是实际问题接触都是如此。经过研究实践显示:小学生对于分数除法的理解能力与运算能力是会受到心理发展特点局限的,特别是可以说清楚为什么要进行颠倒相乘原理的学生少之又少。致使学生理解能力受限的原因来自于多个方面,主要有学生对分数性质不够理解,教师对抽象概念的讲解不够清晰等。本文建议教师借助一题多解、对比分析与线段图应用等方法,让小学生对分数除法多一分理解,对其与实际问题间的联系多一分能力。

一、借助一题多解的模式开拓学生视界

利助一题多解的模式,可以帮助学生更加深入地领会问题本质,以便其能够站在多个角度分析问题、研究问题、解决问题。在指导学生利用分数除法处理实际问题时,教材已经考虑到了学生的思维发展特点,顾全了有关知识在小学高年级及初中的衔接问题,给出了较为优的问题解决途径,即用方程解应用题。但是对于教师来讲,没有必要一切皆按教材的要求去做,却不管其他方法。笔者认为:教师可以大胆鼓励学生多尝试其他类型的问题处理途径,同时帮助学生从多个角度出发,进行问题的分析、研究,以便拓展思路、开拓视界。同时,借助一题多解的模式,学生有了更多学习与交流的机会,从中能够感受到多种方法间的联系与贯通,从而加深对于数量关系的认识与理解,无形中增强以分数除法原理为依托,处理实际问题的能力。

比如下面的问题:

按照测算,一个健康成年人体内水分大致占到体重的2/3左右,而儿童体内水分则大致占体重的4/5。小明的体重中有28千克水分,而小明体重是爸爸体重的7/15。根据这些条件请回答小明的重量是多少;小明爸爸的重量是多少?

在遇到这个问题时,教师就完全可以鼓励学生从不同角度去处理,以便做到殊途同归,万虑一致。第一种是方程法,假设小明的体重是X千克,根据数量关系列出方程;第二种根据已知两数积与其中一个因数,求另一个因数的原理,可用除法直接计算;第三种先把小明体重视为单位1,再平均分成5份,则其中4份都是水,按照这个思路继续解答。

二、借助对比分析的模式帮助构建模型

借助对比分析的模式,使学生明确问题处理的基本结构,接下来学生可以在此基础上形成以分数除法为依托的问题模型。在利用分数除法处理实际问题的过程中,各部分间关系同行程问题处理中存在的数量关系有相似之处,即可以按照基本数量关系式,找到其他有用的关系式。若想知道一个数的几分之几是多少,需要用到乘法予以运算,根据分数乘法所具有的意义,能够给出基本数量关系,即单位1×分率=对应数量,再从这个关系式中推导出其他内容:对应数量÷分率=单位1等。

在教学过程中,教师应当注意到借助分数乘法和分数除法间的对比关系,可以使学生构建模型更加方便快捷,让学生在对比、交流、观察、实践中感受到它们的数量联系,这对于学生发现规律、理解规律、运用规律都是有好处的,他们可以从中真切地领悟与归纳出借助分数除法处理实际问题的基本特点及思路关键节点。

比如在讲解了用分数除法处理实际问题的教材例题以后,教师可以给学生提供进行对比练习的机会:

A:第二小学有1000名学生,女生人数是学生总数的3/5,女生人数是多少?

B:第二小学有400名男生,男生人数是学生总数的2/5,学生总数是多少?

C:第二小学有400名男生,女生比男生多1/5,女生人数是多少?

……

不同的问题提出来以后,教师可以要求学生进行分组训练,即各组每名学生分别处理一个问题,然后小组对这些问题进行对比,从而帮助学生建立用分数除法处理实际问题的宏观模型,而不是将思维局限在只知套用公式的死角。

三、线段图是形象与抽象的联系纽带

小学高年级正处在思维转变的关键阶段,形象思维渐弱,而抽象思维渐强。如何利用好这个阶段,把握住学生的形象思维能力不使其丧失,是数学教师的一项重要任务。单就分数除法处理实际问题这个课题来看,线段图无疑可以帮助学生理清问题同条件间的联系,促进学生解题能力的无形中进步。

在将分数除法看作基本方略,用于处理实际问题的教学过程中,教师会发现,那些与基本结构特征不太相符,同时数量关系又稍显复杂的问题,经常置学生于困窘的境地。此时教师完全可以通过带领学生绘制线段来领会题目意图,使学生在数与形的转换中做到游刃有余,摸清数量关系的特征,從而增强问题处理能力。比如下面的问题:

书店要卖一批辞典,当卖出4/5之后,又运回来1495本,这样一来,书店这批辞典的数量比卖出去的还要多50本。那么原来书店有这批辞典多少本?

当初次接触到这个问题时,学生可能会感觉茫然,不知从何处下手,就算找到思路,也多是用方程的办法来解决,较为复杂。此时教师即可以发挥线段图的功能,引导学生将原有辞典数量看作1,卖出4/5,即可以画线段:

接下来根据已知条件,再于线段上添加50、1495等数量关系,有了线段图的指导,接下来问题如何解决,基本就可以一目了然了。

小学生对于分数除法的理解能力与运算能力是会受到心理发展特点局限的,特别是可以说清楚为什么要进行颠倒相乘原理的学生少之又少。所以要制定出真正可行的课程教学目标,不给学生提出超出其接受极限的目标,而是要在其领会能力之内,找出更多富于启发性的方法。当然,教师还应当注意增加分数性质方面的教学内容,以便学生可以更好地理解分数本身的意义与性质,这是一切分数运算及分数除法实际问题处理的基础。

最后,也是最重要的一点,直观教学应当是小学数学教学的重要方法,万不可认为小学高年级的学生逻辑思维与抽象思维达到一定高度,就对这种方法置之不理,像线段图还是要多画、多应用,让直观的印象直达学生思维学处,形成经久不灭的痕迹。

猜你喜欢

线段小明数量
一次函数助解线段差最大绝对值
小明系列漫画小明篇
做不到
线段图真好用
角:开启位置与数量关系的探索
做不到
头发的数量
向量数量积在解析几何中的应用
如何确定线段的条数
观察