APP下载

小粒野生稻导入系子粒大小和形状的QTL定位

2014-10-20刘开强等

湖北农业科学 2014年16期

刘开强等

摘要:通过AB-QTL分析法,应用Windows QTL Cartographer 2.5软件,于2009~2010年分别在武昌和南宁对一套小粒野生稻(Oryza minuta)导入系的子粒大小、粒长、粒宽与子粒长宽比进行QTL定位。2009年检测到18个QTLs,其中千粒重、粒长、粒宽和子粒长宽比分别检测到6、4、5和3个QTLs,单个QTL可解释表型贡献率的5.18%~21.33%;2010年检测到12个QTLs,其中千粒重、粒长、粒宽和子粒长宽比分别检测到6、2、2和2个QTLs,单个QTL可解释表型贡献率的6.68%~16.55%。两年均检测到的QTLs共有10个,其中4个新鉴定的QTLs的表型贡献率较大,分别为qTGW-9.2、qTGW-12、qGL-9和qGW-12,其增效基因均来自于小粒野生稻。这些携带有利QTL的小粒野生稻导入系是进行水稻(Oryza sativa)产量和品质改良的优良材料。

关键词:小粒野生稻(Oryza minuta);导入系;子粒大小;粒形;QTL定位

中图分类号:Q78 文献标识码:A 文章编号:0439-8114(2014)16-3731-05

Abstract: Quantitative trait loci of grain size and shape were mapped with substitution lines from Oryza minuta with software Windows QTL Cartographer 2.5 in Wuchang and Nanning in 2009 and 2010. In 2009,18 QTLs were identified,among which 6, 4, 5 and 3 QTLs were detected for grain size,grain length,grain width and grain length/grain width, respectively. The phenotypic contribution rate explained by individual QTLs was ranged from 5.18% to 21.33%; In 2010,12 QTLs were identified,among which 6, 2, 2 and 2 QTLs were detected for grain size,grain length, grain width and grain length/grain width, respectively. The phenotypic contribution rate explained by individual QTLs was ranged from 6.68% to 16.55%. A total of 10 QTLs were detected in both two years, among which 4 QTLs newly detected have large phenotypic contribution rate explained by individual QTLs, named as qTGW-9.2, qTGW-12, qGL-9 and qGW-12, with efficiency genes from Oryza minuta. These substitution lines carrying favorable QTLs were elite materials for improving rice yield and quality.

Key words: Oryza minuta; substitution line; grain size; grain shape; QTL mapping

水稻(Oryza sativa)是重要的粮食作物,是全球一半以上人口主要的食物和营养来源。高产、优质一直是水稻的遗传与育种研究的关键所在。不断提高水稻产量和品质,是保障我国农业可持续发展的重要条件。子粒大小是水稻产量的主要构成因子之一,不仅与水稻的产量显著正相关,还严重影响稻米的品质;粒形(粒长、粒宽及子粒长宽比)直接决定稻米的外观品质和加工品质,因此发掘水稻子粒大小和粒形的关键基因,获得具有自主知识产权的高产、优质基因,对培育高产、优质水稻新品种具有重要意义。

目前,已克隆了水稻中几个影响子粒大小和形状的数量性状基因座(Quantitative trait loci, QTL)。如控制水稻粒长和粒重的QTL GS3(Grain Size 3),编码了一个预测的膜蛋白[1]。GS3通过抑制细胞分裂,调控水稻粒长和粒重[1,2]。GS3在水稻中的同源基因DEP1(Dense and Erect Panicle)影响种子的密度和穗型,同时也调控了粒长[3,4]。最近报道的控制粒长的QTL qGL3,编码了一个预测的磷酸酶蛋白(OsPPKL1),通过抑制细胞分裂,调控粒长和粒重[5,6]。qGL3能够使Cyclin-T1;3基因去磷酸化,从而导致子粒变小[5]。因此,qGL3可能通过对Cyclin-T1;3基因进行调控间接控制细胞分裂,从而影响粒长和粒重。目前已克隆了几个影响水稻粒宽的QTLs。其中QTL GW2编码了一个E3泛素连接酶,可能参与降解促进细胞分裂的蛋白,从而负调控水稻粒宽、粒重及产量[7]。另外QTL qSW5/GW5编码了一个未知功能蛋白,能够结合多聚泛素(polyubiquitin)[8,9],表明GW5可能参与蛋白质的降解途径。GW2和GW5的研究结果表明泛素或蛋白质降解途径在子粒大小和重量调控中起着关键作用。QTL GS5编码了一个预测的丝氨酸羧肽酶(serine carboxypeptidase),是粒宽和粒重的正调控因子。GS5过量表达导致子粒变大,而T-DNA插入的gs5突变体导致子粒变小[10]。GS5主要是通过促进细胞分裂影响水稻粒宽和粒重。GW8编码了SPL16转录因子,通过促进细胞分裂调控粒宽[11]。

目前,我国在水稻产量(粒重等)基因克隆研究方面取得了长足发展,已克隆的调控子粒大小与重量的基因大多已在水稻育种中得到广泛应用。例如,南方籼稻品种主要利用GS3的缺失功能等位基因[1,2],而北方粳稻主要利用GS3的同源基因DEP1[3,4]。因此,为了进一步提高我国水稻产量,需要发掘新的调控水稻子粒大小与重量等高产性状的关键基因,在现有品种的基础上通过遗传改良提高水稻产量。

四倍体小粒野生稻(Oryza minuta)拥有多种病虫害抗性,品质优良,是优异的种质资源[12]。在前期的研究中,从国际水稻所引进了小粒野生稻种质资源,通过多年鉴定发现其稻米品质优良。因此构建了一套小粒野生稻导入系[13],期望利用其发掘对栽培稻有利的优质基因。本研究采用AB-QTL(Advanced backcross quantitative trait loci,AB-QTL)分析法对小粒野生稻导入系群体进行子粒大小和粒形的QTL分析,希望从小粒野生稻中发掘对栽培稻有利的子粒大小和粒形QTL,获得有利的QTL连锁标记,以期为培育高产、优质水稻新品种提供实践依据和重要基因资源。

1 材料与方法

1.1 试验材料

本研究供试材料是前期的研究工作中以小粒野生稻(国际水稻研究所种质资源库材料,编号Acc.No.101133)为供体亲本,IR24为受体亲本,构建的一套包括216个株系的小粒野生稻导入系[13]。2009年夏季在华中农业大学水稻试验基地(湖北武汉),2010年春季在广西农业科学院水稻研究所(广西南宁),分别种植216份BC4F2株系群体和IR24,每点设两次重复,按随机区组设计,每个小区3行,每行10株,种植密度为16.5 cm×18.9 cm,选取中间8株考察千粒重(TGW)、粒长(GL)、粒宽(GW)、子粒长宽比(GL/GW)4个性状。分析数据取8个单株的平均值。

1.2 性状的相关分析

各性状间的相关分析在Excel软件中完成,数据为每点两次重复的平均值。

1.3 SSR分析

提取216份导入系的DNA,获得其基因型。DNA的提取、PCR反应、电泳和银染检测的方法均参照文献[13]。

1.4 QTL分析

前期已构建了164个标记,覆盖水稻基因组1 671.7 cM的遗传连锁图[13]。QTL分析均采用Windows QTL Cartographer 2.5 软件[14],先应用复合区间作图法(composite interval mapping, CIM)分析,挑选LOD>3.0的QTL,然后应用多区间作图法(Multiple interval mapping, MIM) 对这些QTL进行验证。随后优化各个QTL 的位置,再检测其显著性,并确定其存在。QTL的命名方法按照Mccouch等[15]的命名原则进行。

2 结果与分析

2.1 导入系及亲本性状的表现

对导入系群体(BC4F2)的4个农艺性状进行考察分析,所获数据基本呈连续分布状态且有广泛分布频率,为多基因控制的数量性状。由表l可见,导入系千粒重、粒长和子粒长宽比的平均值虽介于两亲本值中间,但偏向高值亲本IR24;粒宽的平均值高于高值亲本IR24。

2.2 导入系各性状间的相关性分析

由表2可见,千粒重与粒长、粒宽呈极显著正相关,但与子粒长宽比呈显著负相关。粒长与子粒长宽比呈极显著正相关,而与粒宽呈显著负相关;粒宽与子粒长宽比呈极显著负相关。

2.3 导入系各性状的QTL定位分析

由排列测验1 000次(permutation=1 000,P=0.05)确定各性状的LOD阈值,结果表明在武汉和南宁其平均值均接近3.0。在相应的阈值下对各性状进行了分析,共检测到20个QTLs,这些QTLs的表型贡献率介于5.18%~21.33%(表3)。由于所有性状受环境的影响较大,对两地的各性状数据分别进行了定位分析如表3所示,由表3可知在武汉共检测到18个QTLs,其中有8个来自于小粒野生稻,占44.4%;在南宁共检测到12个QTLs,其中来自于小粒野生稻的有利QTLs为7个,占58.3%。

千粒重(TGW):8个控制千粒重的QTLs分别位于第1、3、7、9、12染色体,其中,第1、7、9染色体上有2个,第3和12染色体上各有1个。在武汉和南宁分别能解释总共62.97%和67.37%的表型变异。位于第12染色体上的qTGW-12效应最大,在武汉和南宁分别能解释15.41%和16.55%的表型变异,其增效基因来自于小粒野生稻。

粒长(GL):4个控制粒长的QTLs分别位于第3、5、9染色体,其中,第3染色体上有2个,第5和9染色体上各有1个。在武汉和南宁分别能解释44.07%和21.11%的表型变异。位于第9染色体上的qGL-9效应最大,能解释18.28%的变异,其增效基因来自于小粒野生稻。

粒宽(GW):5个控制粒宽的QTLs分别位于第1、4、7、12染色体,其中,第1染色体上有2个,第4、7和12染色体上各有1个。在武汉和南宁分别能解释48.33%和22.66%的表型变异。位于第12染色体上的qGW-12效应最大,能解释25.33%的表型变异,其增效基因来自于小粒野生稻。

子粒长宽比(GL/GW):3个控制子粒长宽比的QTLs分别位于第4、7、12染色体,在武汉和南宁分别能解释25.44%和19.00%的表型变异。位于第7染色体上的qGL/GW-7效应最大,能解释11.26%的表型变异,其增效基因来自于IR24。

3 讨论

同栽培稻相比,野生稻基因组中与产量有关的不利基因出现的频率远远高于栽培稻。Xiao等[16]利用AB-QTL策略来检测普通野生稻中有利于改良栽培稻性状的QTL。对12个性状进行QTL定位。一共定位了68个QTLs,其中35个(占51.0%)有利等位基因来自表型较差的普通野生稻亲本。随后不同研究者利用相同方法检测到来自于普通野生稻的有利QTLs占33.0%~74.0%[17-19]。Yoon等[20]应用至少含有51个重颖野生稻片段的中间材料与一份韩国粳稻品种杂交获得的F2∶3家系,对13个农艺性状进行了QTLs分析,共检测到39个的QTLs,正效的QTLs有18(46.2%)个来自于重颖野生稻。Rahman等[21]应用至少含有14个小粒野生稻片段的中间材料与一份韩国粳稻品种杂交获得的F2∶3家系,对16个农艺性状进行QTLs分析,共检测到36个QTLs,其中有22个与产量及产量相关性状的QTLs为首次报道。其中来自于小粒野生稻正效QTLs占57.0%。

通过以上分析可见,总体而言野生稻中不利基因出现频率高,但在性状之间存在差异,因而在利用野生稻资源时应视具体性状而论。另外,不同染色体出现有利基因的频率也存在差异。本研究共检测到20个QTLs,其中来自于小粒野生稻的有利QTLs有9个,占45.0%,分布在1、7、9和12条染色体上,有利基因出现在第9和12染色体上频率最高。

本研究检测到的QTLs与其他群体定位的QTLs结果进行比较,发现许多QTLs是重叠或相同的(表3),其中部分为首次报道。在被检测到的20个QTLs中,有10个为首次报道。共定位到8个控制千粒重的QTLs,其中4个早前已有报道,分别为qTGW-1.1、qTGW-1.2[22]、qTGW-3[17]、qTGW-9.1[18]。4个新的QTLs分别为qTGW-7.1、qTGW-7.2、qTGW-9.2和qTGW-12,其中qTGW-7.2仅在武汉被检测到,qTGW-7.1仅在南宁被检测到,其增效基因分别来自小粒野生稻和IR24。而qTGW-9.2和qTGW-12在两地均被检测到,且表型贡献率较大,其增效基因都来自小粒野生稻。3个粒型性状共检测到12个QTLs,其中6个为已有报道,分别为qGW-1.1、qGW-1.2[22]、qGL-3.1、qGW-7[23]、qGL-3.2[17]、qGL-5[24]。而qGL-9、qGW-4、qGW-12、qGL/GW-4、qGL/GW-7、qGL/GW-12均为首次报道。其中表型贡献率较大的有2个分别为qGL-9和qGW-12,在武昌和南宁均被检测到,表型贡献率的平均值分别为14.26%和17.32%,增效基因均来自小粒野生稻。

另外,本研究中的4个性状均检测到来自小粒野生稻的正效QTLs,对水稻的产量和品质具有改良潜力。这些来自小粒野生稻的正效QTLs存在的形式多种多样,有的单独存在,有的处于多效QTLs区间呈簇状分布。因此针对不同QTLs的特点,在进一步利用时必须采取不同的方法区别对待。对一些控制单一性状的QTLs位点,可以直接利用。如第5染色体上RM548~RM509标记区间检测到控制粒长的QTLs。而对于多效性的QTLs,由于控制多个性状,所以在利用时应多个性状相互兼顾。如第9染色体上RM215~RM205标记区间检测到控制千粒重和粒长的QTLs,在增加粒重的同时增加粒长,很可能将高产与优质相结合。而对第12染色体上RM19~RM512标记区间检测到一个控制千粒重和粒宽的QTLs,在增加产量的同时,粒宽也增加,很可能对稻米品质产生负效应,在利用时应综合考虑。

参考文献:

[1] FAN C, XING Y, MAO H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theor Appl Genet,2006,112:1164-1171.

[2] MAO H, SUN S, YAO J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. PNAS,2010,107:19579-19584.

[3] HUANG X, QIAN Q, LIU Z, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nat Genet, 2009,41:494-497.

[4] ZHOU Y, ZHU J, LI Z, et al. Deletion in a Quantitative Trait Gene qPE9-1 Associated With Panicle Erectness Improves Plant Architecture During Rice Domestication[J]. Genetics,2009,183:315-324.

[5] QI P, LIN Y, SONG X, et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1; 3[J]. Cell Res,2012,22:1666-1680.

[6] ZHANG X, WANG J, HUANG J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. PNAS,2012,109:21534-21539.

[7] SONG X, HUANG W, SHI M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nat Genet,2007,39:623-630.

[8] SHOMURA A, IZAWA T, EBANA K, et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nat Genet, 2008,40:1023-1028.

[9] WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008,18:1199-1209.

[10] LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011,43:1266-1269.

[11] WANG S, WU K, YUAN Q, et al.. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012,44:950-954.

[12] KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Mol. Bio,1997,35:25-34.

[13] GUO S B, QIN F L, ZHANG D P, et al. Characterization of interspecific hybrids and backcross progenies from a cross between Oryza minuta and Oryza sativa[J]. Sci China Ser C-Life Sci, 2009(52):1148-1155.

[14] WANG S, BASTEN C, ZENG Z. Windows QTL Cartographer 2.5[M]. Department of Statistics, North Carolina State University, Baleigh,USA,2007.

[15] MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet. Newslett, 1997(14):11-13.

[16] XIAO J H, LI J M, GRANDILLO S, et al. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909.

[17] MONCADA P, MARTINEZ C P, BORRERO J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 Population evaluated in a upland environment[J]. Theor. Appl. Genet,2001(102):41-52.

[18] THOMSON M J, TAI T H, MCCLUNG A M, et al. Mapping quantitative trait loc for yield components and morphological traits in an advanced backcross population between O. rufipogon and the Oryza sativa cultivar Jefferson[J]. Theor Appl. Genet,2003,107:479-493.

[19] MARRI P R, SARLA N, REDDY L V, et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics, 2005,33:1-14.

[20] YOON D B, KANG K H, KIM H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseoungbyeo[J]. Theor Appl Genet,2006,112:1052-1062.

[21] RAHMAN M, CHU S H, CHIO M S, et al. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta[J]. Mol. Cells,2007(24):16-26.

[22] CHO Y C, SUH J P, CHOI I S, et al.QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon[J]. Treat Crop Res,2003(4):19-29.

[23] GE X J, XING Y Z, XU C G, et al. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population[J]. Plant Breeding, 2005,124:121-126.

[24] WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and ne mapping of an identified QTL with stable and major effects[J]. Theor Appl Genet,2006,112: 1258-1270.

(责任编辑 韩 雪)

[9] WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008,18:1199-1209.

[10] LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011,43:1266-1269.

[11] WANG S, WU K, YUAN Q, et al.. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012,44:950-954.

[12] KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Mol. Bio,1997,35:25-34.

[13] GUO S B, QIN F L, ZHANG D P, et al. Characterization of interspecific hybrids and backcross progenies from a cross between Oryza minuta and Oryza sativa[J]. Sci China Ser C-Life Sci, 2009(52):1148-1155.

[14] WANG S, BASTEN C, ZENG Z. Windows QTL Cartographer 2.5[M]. Department of Statistics, North Carolina State University, Baleigh,USA,2007.

[15] MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet. Newslett, 1997(14):11-13.

[16] XIAO J H, LI J M, GRANDILLO S, et al. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909.

[17] MONCADA P, MARTINEZ C P, BORRERO J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 Population evaluated in a upland environment[J]. Theor. Appl. Genet,2001(102):41-52.

[18] THOMSON M J, TAI T H, MCCLUNG A M, et al. Mapping quantitative trait loc for yield components and morphological traits in an advanced backcross population between O. rufipogon and the Oryza sativa cultivar Jefferson[J]. Theor Appl. Genet,2003,107:479-493.

[19] MARRI P R, SARLA N, REDDY L V, et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics, 2005,33:1-14.

[20] YOON D B, KANG K H, KIM H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseoungbyeo[J]. Theor Appl Genet,2006,112:1052-1062.

[21] RAHMAN M, CHU S H, CHIO M S, et al. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta[J]. Mol. Cells,2007(24):16-26.

[22] CHO Y C, SUH J P, CHOI I S, et al.QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon[J]. Treat Crop Res,2003(4):19-29.

[23] GE X J, XING Y Z, XU C G, et al. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population[J]. Plant Breeding, 2005,124:121-126.

[24] WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and ne mapping of an identified QTL with stable and major effects[J]. Theor Appl Genet,2006,112: 1258-1270.

(责任编辑 韩 雪)

[9] WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008,18:1199-1209.

[10] LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011,43:1266-1269.

[11] WANG S, WU K, YUAN Q, et al.. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012,44:950-954.

[12] KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Mol. Bio,1997,35:25-34.

[13] GUO S B, QIN F L, ZHANG D P, et al. Characterization of interspecific hybrids and backcross progenies from a cross between Oryza minuta and Oryza sativa[J]. Sci China Ser C-Life Sci, 2009(52):1148-1155.

[14] WANG S, BASTEN C, ZENG Z. Windows QTL Cartographer 2.5[M]. Department of Statistics, North Carolina State University, Baleigh,USA,2007.

[15] MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet. Newslett, 1997(14):11-13.

[16] XIAO J H, LI J M, GRANDILLO S, et al. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909.

[17] MONCADA P, MARTINEZ C P, BORRERO J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 Population evaluated in a upland environment[J]. Theor. Appl. Genet,2001(102):41-52.

[18] THOMSON M J, TAI T H, MCCLUNG A M, et al. Mapping quantitative trait loc for yield components and morphological traits in an advanced backcross population between O. rufipogon and the Oryza sativa cultivar Jefferson[J]. Theor Appl. Genet,2003,107:479-493.

[19] MARRI P R, SARLA N, REDDY L V, et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics, 2005,33:1-14.

[20] YOON D B, KANG K H, KIM H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseoungbyeo[J]. Theor Appl Genet,2006,112:1052-1062.

[21] RAHMAN M, CHU S H, CHIO M S, et al. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta[J]. Mol. Cells,2007(24):16-26.

[22] CHO Y C, SUH J P, CHOI I S, et al.QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon[J]. Treat Crop Res,2003(4):19-29.

[23] GE X J, XING Y Z, XU C G, et al. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population[J]. Plant Breeding, 2005,124:121-126.

[24] WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and ne mapping of an identified QTL with stable and major effects[J]. Theor Appl Genet,2006,112: 1258-1270.

(责任编辑 韩 雪)