APP下载

燃油汽车与纯电动车能源足迹实证研究

2014-09-21罗晓梅黄鲁成

中国人口·资源与环境 2014年9期

罗晓梅 黄鲁成

摘要 相对燃油汽车而言,纯电动车具有能耗低、污染小等特点。但仅用汽车使用阶段的能源消耗判断汽车的节能环保情况是片面的。论文基于能源足迹模型对燃油汽车和纯电动车生命周期各阶段的能源足迹进行了实证研究,研究范围包括原材料生产、制造和使用三个阶段。其中,原材料生产阶段能源足迹的核算范围包括车辆主体原材料生产、汽油生产和电池原材料生产三个阶段的能源消耗,制造阶段能源足迹的核算范围包括车辆主体制造和电池制造两个阶段的能源消耗,使用阶段能源足迹的核算范围为汽车报废里程内的能源消耗。研究结果表明:燃油汽车和纯电动车在原材料生产阶段、制造阶段和使用阶段的能源足迹总量分别为31.18 hm2和9.74 hm2,其中,燃油汽车和纯电动车车辆主体原材料生产阶段的能源足迹分别为0.015 hm2和0.014 hm2,汽油生产阶段的能源足迹为2.83 hm2,电池原材料生产过程的总能源足迹为0.003 2 hm2;燃油汽车和纯电动车车辆主体制造阶段的能源足迹均为0.29 hm2,电池制造过程的能源足迹为0.000 037 hm2;燃油汽车和纯电动车使用过程中的能源足迹分别为28.04 hm2和9.4 hm2。从能源足迹的阶段构成来看,燃油汽车和纯电动车的能源足迹主要源于汽车使用阶段,原材料生产阶段和制造阶段的能源足迹相对较小。从能源足迹的来源看,汽油生产阶段的能源消耗是燃油汽车能源足迹的主要构成部分,发电厂的能源消耗是纯电动车能源足迹的主要构成部分。因此,控制汽油炼制和使用过程的能源消耗是减少燃油汽车能源足迹的主要途径,控制发电厂的能源消耗是减少纯电动车能源足迹的主要途径。本文提供了一种核算汽车产品生命周期内能源消耗的量化方法,研究过程和方法可为评价工业产品的能源消耗提供参考。

关键词 燃油汽车;纯电动车;能源足迹

中图分类号 X322 文献标识码 A 文章编号 1002-2104(2014)09-0084-07

纯电动车具有能耗低、污染小等特点,其研发、生产、推广和使用备受关注。但是,有些学者认为,仅从汽车上路后的能源消耗来衡量汽车由内燃机向电驱动转化的环保与否是片面的。主要原因是:一方面,生产纯电动车电池消耗稀有金属、有色金属等原材料,这些原材料的开采、冶炼、加工过程伴随严重污染;另一方面,纯电动车虽然不消耗汽油、柴油等能源,但电池的充放电过程要消耗电能。在我国,电能主要源于火力发电。1994年至今,我国的火电发电量占比一直在80%以上。火力发电厂所使用的燃料基本上都是煤炭(有小部分的天然气和石油),全国煤炭消费总量的49%用于发电(数据来源:《2011年电力工业统计快报》)。鉴于上述两点,纯电动车相对于传统燃油汽车在多大程度上节约能源,是否真正实现了“生态友好效应”,是理论界和实践界争论的焦点问题[1]。

目前,比较研究燃油汽车和纯电动车能源消耗的文献数量较少。在CNKI中以“燃油汽车+纯电动车+能源”为主题进行检索(检索时间为2013年12月30日),检索结果为0篇;以“纯电动车+能源”和“燃油汽车+能源”为主题在CNKI中检索索(检索时间为2013年12月30日),检索结果为1 256篇和428篇,且文献的主要来源为报纸、新闻报道,学术期刊文章较少;在ScienceDirect Online 中以“fuel or gasoline or petrol automobile”或者“BEV or Battery Electric Vehicles or Pure electric vehicle”和“energy”为主题进行检索(检索时间为2013年12月30日),检索结果仅为2篇。现有的相关研究主要核算了纯电动车和燃油汽车在生产、装配过程中的能源消耗和污染排放问题。如KiHoon Lee以现代汽车为例研究了汽车产业链的碳足迹[2],S.I.Bartsev, A.G.Degermendzhi,V.A Okhonin,M.Y.Saltykov 从环境管理优化的角度比较分析了燃油汽车和纯电动车生产过程对生态环境的影响[3],Z.J. Li, X.L. Chen, M. Ding比较分析了电动车和非电动车生产过程中的能源消耗和污染物排放情况[1],宁艳红基于济南工况实证研究了纯电动车和燃油汽车的能耗排放[4],史占国研究了汽车产业的生态足迹[5],王寿兵分析了某轿车生命周期内的能源消耗和和环境排放情况[6]。

综合前人研究成果可知,国内外学者目前的研究主要集中在燃油汽车和纯电动车生产过程中的能源消耗、污染排放、环境污染等,尚未见到比较研究燃油汽车和纯电动车生命周期内能源足迹的相关研究。笔者从汽车产业生命周期角度出发,比较研究燃油汽车和纯电动车在原材料生产、汽车制造和汽车使用三个阶段的能源消耗情况,依据能源足迹理论将其“特征化”为能源足迹。在此基础上,综合比较、分析纯电动车和燃油汽车能源足迹的结构特征。研究结果一方面可为企业研发、产业发展和政府决策部门提供支撑,另一方面可为研究相似产业的能源足迹提供理论参考。

1 研究对象、范围和假设

1.1 研究对象

比较燃油汽车和纯电动车的能源足迹需要保证两类产品的原材料工艺、车辆主体构造完全相同。这样的样本和数据即使在同一厂家生产的燃油汽车和纯电动车中也很难找到。朱一方等人研究了混合动力车的能耗,研究过程中将混合动力车分为车身系统、发动机系统、传动系统、底盘系统(无电池组)、牵引电机、发电机和控制器[7]。为了达到比较研究燃油汽车和纯电动车的能源足迹的目标,本文假设混合动力车、燃油汽车和纯电动车的区别主要体现在动力系统,即发动机系统、牵引电机、发电机和电池。据此,本文将朱一方研究成果中混合动力车的相关数据进行调整,设定本文研究对象的相关参数如下:

(1)燃油汽车:驱动方式为发动机驱动、前轮驱动,车体为两厢式,发动机为1.8 L直列四缸汽油机,燃油经济性为10 L/百公里(90号汽油),最高时速140 km/h,报废里程为60万km(15年),车辆总质量(不加燃油)为1 143.7 kg。

(2)纯电动车:驱动方式为电力驱动、前轮驱动,动力电池组为镍氢电池,车体为两厢式,百公里电耗为16 kWh(已上市纯电动车平均耗电量),最高时速170 km/h,报废里程为60万km(15年),车辆总质量为990.9 kg(不包含电池)。

其中,百公里油耗、电耗参照已上市汽车的平均消耗量确定;报废里程根据商务部出台的《机动车强制报废标准规定》确定。

1.2 阶段范围

汽车的生命周期经历从原材料获取到最终焚烧、填埋、循环利用的整个过程。但是,收集一个产品整个生命周期内所有过程的数据是不可能完成的工作。因此,在比较研究燃油汽车和纯电动车生命周期内的能源足迹时,需要重新界定其评价环节。本文将研究对象的阶段范围确定为与汽车制造存在直接物质关联的环节,与汽车制造产业间接相关的电网架设、厂房建设与产品设计等环节不在评价范围内。汽车维修、报废过程中的能源消耗与汽车整个生命周期中的能源消耗相比很小,且数据收集很难[8],本文暂不考虑汽车维修、报废过程中的能源消耗。综上所述,本文将研究对象的阶段范围界定为原材料生产、汽车制造、汽车使用三个阶段。其中,原材料生产阶段的能源足迹是指原材料生产过程中耗用的煤、石油、天然气等各类能源对应的足迹,不包括原材料的材质对应的能源足迹。汽车制造阶段的能源足迹是指原材料进厂、加工、制造、装配、出厂整个过程中消耗的能源对应的足迹。汽车使用阶段的能源足迹是指汽车在报废里程内的油耗和电耗对应的能源足迹。

1.3 研究假设

燃油汽车和纯电动车的原材料来源复杂、制造工艺和系统往往存在很大差异,为了实现研究目标,本文对研究对象进行了如下假设:

(1)燃油汽车、纯电动车的原料来源和工艺相同,除动力系统外,二者的零件构成和加工工艺均相同;

(2)假定原材料中所用到的钢材(不论牌号)均为普通钢材,所用铝合金均当普通铝材看待。铜材、橡胶、塑料、玻璃、油漆也一样,不分牌号和品种,均以总量计。假定公司外购的配套件与本厂生产的同类零件的平均工艺系数相同;

(3)假定能源消耗的种类由煤、石油和天然气构成,能源全球平均足迹为三类能源全球平均足迹的平均值;

(4)假定所有电能均为火力发电,发电能耗为全国平均水平。

2 燃油汽车和纯电动车能源足迹核算

2.1 能源足迹计算方法

1992年,加拿大生态经济学家Wackernagel 和Rees首次提出了生态足迹的概念[9-10]。能源足迹(ENF)是生态足迹计算中的一个独立的重要构成部分,是用吸收能源消耗产生的CO2的林地面积来衡量国家、产业、产品能耗情况的一种量化方法[11]。能源足迹的分量包括化石能源足迹[12]、核能足迹[13]、可再生能源足迹[14]、风能足迹[15]和太阳能足迹[16]等,本文中的能源足迹是指化石能源足迹。化石能源足迹的计算方法包括传统的替代法、自然资本存量法和碳吸收法三种[17-19]。其中,碳吸收法采用估算新增CO2所需要的林地面积来计算生态足迹,将CO2排放转化成对应的生物生产性土地面积,应用比较广泛[20]。本文采用碳吸收法比较研究燃油汽车和纯电动车的能源足迹,计算公式如下:

EFE=Σ(Eq(ghm2/hm2)×Ci(kg)×Ji(coal equivalent)×7 000(kcal)×4.186 8×103(J))/mi(GJ/ghm2)×106

=Σ(Eq(ghm2/hm2)×Ci(kg)×29.307 6(J)/mi(GJ/ghm2)(1)

EFE为人均能源足迹,i(i=1,2…n),分别表示能源消费项目煤、焦炭、燃料油、煤油、汽油、柴油、液化石油气、电力等;Eq为林地均衡因子,本文取值1.4[21];Ci为第i项能源消耗量,Ji为第i项能源消费的标准煤折算系数;mi为第i项能源消耗的全球平均足迹,本文取煤、石油和天然气的全球平均足迹的平均值80 GJ/ghm2[7];计算过程中需将不同品种、不同含量的能源按各自的热值换算成每千克热值为7 000 kcal的标准煤,其中,1 kg标准煤=7 000 kcal, 1 kcal=4.186 8×103 J。

2.2 原材料生产阶段能源足迹

原材料生产阶段的能源足迹主要包括车辆主体原材料、汽油产以及电池生产过程的能源足迹。电池是随着电动汽车技术的发展应用于汽车动力系统的部件,其生产过程的能耗尚没有被系统的研究过,本文将其作为一个关键部件单独研究其生产过程的能源足迹。汽油的特性与车辆主体原材料区别较大,本文也单独研究其生产过程的能源足迹。

2.2.1 车辆主体原材料生产阶段的能源足迹

确定原材料生产阶段能源足迹的前提是要明确汽车的“系统构成”和“材料构成”。本文对朱一方关于混合动力车的研究数据进行了“总质量等比例处理”和“系统部件加减处理”,得到了燃油汽车和纯电动车车辆主体的系统构成和总质量,见表1[22]。

为了计算车辆主体各子系统的能源消耗,需要收集各子系统对应的“材料”类型和质量。本文对上述数据进行简化处理:以上表所列的各子系统为单位,将同一系统中采用相似原材料、相似加工方法制造的一类零件视为同一“材料”,并将这一类零件的质量作为该系统中这种“材料”的质量[6,22-23]。如此,便可将整个车辆主体部分的原材料简化为钢、铸铁、铸铝、锻铝、铜、镁、玻璃、塑料、橡胶、铂等“材料”。

考虑到数据的可获得性和各种材料的质量,本文仅考虑钢材、铸铁、铝材、铜材、橡胶、塑料、玻璃和油漆八种质量较大的材料。燃油汽车和纯电动车材料组成清单见表2[22]。汽车的原材料使用量应该采用实际的物料消耗量,而不能采用汽车构成“材料”的质量。因此,计算车辆主体部分的原材料消耗量时要考虑物料利用率[5]。此外,计算车辆主体原材料的能源足迹时需考虑每种原材料的携带能源。携带能源是指工业产品生命周期内制造、运输、使用、丢弃等消耗的能源,通常用能源密度表示。汽车制造过程中各原材料的能源密度见表2[6]。

根据各类“材料”的质量、物料利用率以及能源密度,可计算出车辆主体部分原材料生产过程的能源消耗量,见表2。将能源消耗总量依次代入公式(1)可得燃油汽车和纯电动车车辆主体原材料生产过程的能源足迹,分别为0.015 hm2和0.014 hm2。

2.2.2 汽油生产阶段的能源足迹

石油炼制过程一般同时有多种产品产生,汽油只是其中的一种。所以,要得到汽油生产过程中的能源消耗就必须对总的能耗进行分配。等质量的汽油热值是石油的1.03倍,所以汽油生产的能耗应等于开采和炼制石油的总能耗的1.03倍。石油开采的能耗为13.40 kg标油/t石油,炼油的综合能耗为73.50 kg标油/t石油[24]。所以可得生产汽油的综合能耗为89.51 kg标油/t汽油。

本文设定的燃油汽车的报废里程为60万km,百公里油耗为10 L。则可计算出汽车的总油耗为6万L,约合43 200 kg。由此可得汽油生产环节消耗的能源为3 866.83 kg标油,约合161.90 GJ(标油的热值为41.87 GJ/t),将其代入公式(1)可得汽油生产过程的能源足迹为2.83 hm2。

2.2.3 电池原材料生产阶段的能源足迹

动力电池是电动汽车最主要的部件之一。动力电池的发展主要经历了铅酸电池阶段、镍氢电池阶段和锂离子(Liion)电池阶段。镍氢电池已经进入成熟期,实现了规模化生产;锂电池将是未来动力电池的发展方向,技术成熟后,将逐步取代镍氢电池市场。本文研究对象纯电动车的电池为镍氢电池,质量为38.2 kg。同样,将整个电池的“材料”组成简化为钢、铁、铝、铜、镁、钴、镍、铅、稀土、玻璃纤维、塑料、橡胶等,具体清单如表3所示。根据各类“材料”的质量、能源密度和物料利用率可得电池原材料生产过程的能源消耗量,见表3[5-6]。依据公式(1)可得镍氢电池原材料生产过程的能源足迹为0.000 8 hm2。一般一辆纯电动车上需要装载四块电池,因此本文电池原材料生产过程的总能源足迹为0.003 2 hm2。

2.3 制造阶段能源足迹

汽车制造阶段的能源足迹包括车辆主体制造和电池制造能源足迹两个部分。由于燃油汽车和纯电动车结构上的区别主要在动力系统,单独区分动力系统制造过程的能源消耗的难度极大。因此,本文假定燃油汽车和纯电动车车辆主体制造阶段的能源消耗相同。

2.3.1 车辆主体制造阶段能源足迹

汽车制造环节的数据几乎都是厂家所有,计算能源消耗必须依据生产厂家的实际生产数据。但是,汽车产业的最大特点之一是厂商之间协作多。一个轿车的零配件可由几个、十几个甚至几十个厂商生产。获得汽车制造和装配过程的能源消耗数据的难度很大。因此,本文假设文中燃油汽车纯电动车的生产模式为厂家自己生产主要部分零配件,外购一些小配件。笔者设计了一套满足LCA清单分析要求和各类厂家及零部件生产厂家的一套调查表格,对汽车制造企业和销售企业的能源消耗情况进行了调研。同时参考了朱一方、黄志甲、王寿兵、史占国、Vanni Badno, Gian Luca Baldo等人的研究成果[25,6,5]。综合以上数据,得到汽车制造过程中的平均能源消耗为16.5 GJ。将该数据代入式(1)可得车辆主体制造阶段的能源足迹为0.29 hm2。

2.3.2 电池制造阶段能源足迹

电池制造阶段的能耗是指报告期内企业电池产品从原材料进厂至成品入库的生产全过程中所消耗的所有能源。镍氢电池单位产量能耗应为企业生产镍氢电池的总综合能耗与同期内产出的该产品合格品总量的比值,如式(2):

e=FM(2)

式中:e为镍氢电池单位产量综合能耗,单位为kg(标准煤)/万只;E为电池生产总综合能耗,单位为t(标准煤);M为合格品总量,单位为万只。

按照《镍氢电池单位产量综合能耗计算方法及限额》规定,镍氢电池单位产量综合能耗应不大于180 kg(标准煤)/万只[26]。因此,本文将镍氢电池生产过程的能源消耗确定为镍氢电池单位产量综合能耗限额,即0.018 kg标准煤/只。四只电池的总能源消耗为0.072 kg标准煤[27]。按照公式(1)计算可得电池制造过程的能源足迹为0.000 037 hm2。

2.4 使用阶段能源足迹

2.4.1 燃油汽车使用阶段能源足迹

汽车燃油消耗量的计算方法如下:

Q=q×s (3)

其中,Q代表单车燃油消耗总量,单位为升,s代表单车报废里程,q代表单车百公里油耗。

本文燃油汽车百公里油耗为10 L,汽车的报废里程为60万km。将两个参数代入公式可得单车燃油消耗总量为6万L(43 200 kg)。又已知汽油的热量折算系数为43.12 GJ/t,全球平均足迹为93 GJ/ghm2,依据公式(1)可计算出燃油汽车使用过程中的能源足迹为28.04 hm2。由于轿车行驶过程中的油耗与工况、轿车寿命、行驶里程等诸多因素相关,所以轿车的实际油耗量与经济油耗量之间往往有较大差别。经济油耗量(10 L/百公里)只能作为能源消耗的下限。

2.4.2 纯电动车使用阶段能源足迹

纯电动车耗电量的计算方法如下:

E=e×s(4)

其中,E代表单车耗电总量,s代表单车报废里程,q代表单车百公里电耗。

纯电动车报废里程为60万km,百公里电耗为16 kWh。将两个参数代入公式可得单车耗电总量为96 000 kWh,合345.6 兆焦耳(GJ)。因此,在不计及发电厂碳排放的基础上,依据公式(1)可得纯电动车使用过程中的能源足迹为0.48 hm2。

如果进一步追踪发电厂的能源足迹,视全部电量来自于火电厂,忽略输电网损,已知火电机组煤炭平均利用率η=50%,单位千瓦时电量煤耗349 g[28],则可依据公式(1)计算出纯电动车使用过程中总的能源足迹为9.4 hm2。

2.5 燃油汽车和纯电动车能源足迹结构分析

综合以上分析,燃油汽车和纯电动车的能源足迹总量及构成见表4:

3 结 论

本文应用能源足迹模型核算了燃油汽车和纯电动车原材料生产、制造和使用三个阶段的能源足迹。研究结果显示:燃油汽车和纯电动车在原材料生产阶段、制造阶段和使用阶段的能源足迹总量分别为31.18 hm2和9.74 hm2,燃油汽车生命周期内的能源消耗远大于纯电动车生命周期内的能源消耗。从能源足迹的阶段构成来看,燃油汽车和纯电动车的能源足迹主要均源于使用阶段,原材料生产和制造阶段的能源足迹相对较小。从能源足迹的来源看,汽油生产和使用过程的能源消耗是燃油汽车能源足迹的主要构成部分,发电厂的能源消耗是纯电动车使用过程能源足迹的主要构成部分。由此可知,为了全面评价燃油汽车和纯电动车的能源足迹,不仅要考虑汽车使用阶段的能源消耗,还要考虑原材料生产和车辆制造阶段的能源消耗。控制汽油炼制和使用过程的能源消耗是减少燃油汽车能源足迹的主要途径,控制发电厂的能源消耗是减少纯电动车能源足迹的主要途径。本文提供了一种评价产品生命周期内能源消耗情况的量化方法,研究过程和方法可为评价工业产品的能源消耗提供参考。

(编辑:田 红)

参考文献(References)

[1]Li Z J, Chen X L, Ding M. Welltowheel Energy Consumption and Pollutant Emissions Comparison between Electric and Nonelectric Vehicles: A Modeling Approach[J]. Procedia Environmental Sciences,2012,(13): 550-554.

[2]Lee K H.Integrating Carbon Footprint Into Supply Chain Management: The Case of Hyundai. Motor Company (HMC) in the Automobile Industry[J]. Journal of Cleaner Production, 2011,(19): 1216-1223.

[3]Bartsev S I, Degermendzhi A G , Okhonin V A, Saltykov M Y. An Integrated Approach to the Assessment of an Ecological Impact of Industrial Products and Processes[J]. Procedia Environmental Sciences,2012,(13): 837-846.

[4]宁艳红. 基于运行工况的纯电动车与汽油车能耗排放比较分析[D].济南:山东大学, 2010年.[Ning Yanhong. Energy Consumption and Emission Comparison between EV and Gasoline Vehicle[D].Jinan: Shandong University,2010.]

[5]史占国. 生态足迹评价与物质流分析[D].武汉:武汉理工大学, 2007. [Shi Zhanguo. Evaluation of the Ecological Footprint and Material Flow Analysis[D]. Wuhan:Wuhan University of Technology,2007.]

[6]王寿兵. 中国某轿车生命周期内能耗和环境排放特性[J]. 复旦学报:自然科学版,2006,45(3):329-334. [Wang Shoubing. Energy Consumption and Environmental Emissions in Chinese Car Life Cycle[J]. Journal of Fudan University :Natural Science, 45(3):329-334.]

[7]朱一方.混合动力汽车制造过程的能源消耗与影响评价[D].吉林:吉林大学,2012.[Zhu Yifang. Energy Consumption and Impact Assessment of Hybrid Car in Manufacturing Process[D]. Jilin: Jilin University, 2012.]

[8]姚猛.中国汽车产业生态足迹情景分析[D].苏州:苏州科技大学,2009.[Yao Meng. Chinas Automobile Industry Ecological Footprint Scenario Analysis[D]. Suzhou:Suzhou University of Science and Technology, 2009.]

[9]Wackernagel M, Rees W. Our Ecological Footprintreducing Human Impact on the Earth[J]. Environment and Urbanization,1996,8 (2), 216-216.

[10]Wackernagel M, Rees W E. Perceptual and Structural Barriers to Investing in Natural Capital: Economics from an Ecological Footprint Perspective[J]. Ecological Economics, 1997, 20 (1), 3-24.

[11]Palmer A R. Evaluating Ecological Footprints[J]. Electronic Green Journal,1994,4(6):200-204.

[12]Stoeglehner G, Narodoslawsky M. How Sustainable Are Biofuels? Answers and Further Questions Arising From An Ecological Footprint Perspective[J].Bioresource Technology 2009,100(3):3825-3830.

[13]Stoeglehner G, Levy J K, Neugebauer G C. Improving the Ecological Footprint of Nuclear Energy: A Riskbased Lifecycle Assessment Approach for Critical Infrastructure Systems[J]. International Journal of Critical Infrastructures, 2005, 1 (4):394-403.

[14]Chen C Z, Lin Z S. Multiple Timescale Analysis and Factor Analysis of Energy Ecological Footprint Growth in China 1953-2006[J]. Energy Policy, 2008,36: 1666-1678.

[15]Stamford L, Azapagic A. Sustainability Indicators for the Assessment of Nuclear Power[J]. Energy, 2011,36 (10):6037-6057.

[16]Brown N. Ongoing Case: Solar Energy PEIS, In: Case Digest: Section 106 in Action, Advisory Council on Historic Preservation. 2009. (accessed 08.02.12.).

[17]Stoglehner G. Ecological Footprint: A Tool for Assessing Sustainable Energy Supplies[J].

Joumal of Cleaner Production,2003,11:267-277.

[18]Ferng J J. Toward a Scenario Analysis Framework for Energy Footprints[J].Ecological Economies,2002,40:53-69.

[19]刘森,胡远满,李月辉等.生态足迹方法及研究进展[J].生态学杂志,2006,25(3):334-339.[Liu Sen, Hu Yuanman,Li Yuehui. The Ecological Footprint Method and Research Progress[J]. Chinese Journal of Ecology, 2006,25(3):334-339.]

[20]Hardi P,Barg S,Hodge T,et a1.Measuring Sustainable Development:Review of Current Practice[J].Occasional Paper,1997,17:1-2,49-51.

[21]GFN. National Footprint and Biocapacity Accounts 2005: The Underlying Calculation Method[EB/OL]. http://www.footprint standards org.

[22]MacLean H L, Lave L B. Evaluating Automobile Fuel Propulsion System Technologies [J].Progress in Energy and Combustion Science, 2003,(29):1-69.

[23]Sullivan J L,Burnham A,Wang M.Energyconsumption and Carbonemission Analysis of Vehicle and Component Manufacturing[R].Energy Systems Division,Argonne National Laboratory, 2013.

[24]林而达,李玉娥.全球气候变化和温室气体清单编制方法[M].北京:气象出版社,1998年.[Lin Erda, Li Yue. Compilation Method of Global Climate Change and Greenhouse Gas List[M].Beijing: Meteorological Press,1998.]

[25]黄志甲,张旭.汽车燃料的生命周期评价模型[J].同济大学学报,2003,31(12):1472-1476. [Huang Zhijia, Zhang Xu. Life Cycle Assessment Model of Vehicle Fuel[J]. Journal of Tongji University,2003,31(12): 1472-1476.]

[26]天津市质量技术监督局. DB12/046-2008产品单位产量综合能耗计算方法及限额[S].2011. [Tianjin Municipal Bureau of Quality and Technical Supervision. DB12/046-2008 Method and Limit of Comprehensive Energy Consumption Per Unit Product [S]. 2011.]

[27]何小明,杨林,等.电动汽车用镍氢蓄电池组热量仿真与控制[J].汽车技术,2004,(6):10-12.[He Xiaoming, Yang Lin,et al. NIMH Battery Heat Simulation and Control of Electric Vehicles[J]. AutomotiveTechnology,2004,(6):10-12.]

[28]王善生,甘凌霄. 基于“能源碳足迹”的纯电动汽车的技术经济研究[J].电网与清洁能源,2012, 28 (4):77-85.[Wang Shansheng, Gan Lingxiao. Technology Economic Research Based on the ‘Carbon Footprint Energy of Pure Electric Vehicle [J]. Grid and Clean Energy, 2012,28 (4):77-85.]

Abstract In contrast with Petrol Automobile, Battery Electric Vehicle have the advantages of low energy consumption and low pollution and so on. But it is biased to endow the Battery Electric Vehicle with the characteristics of energy conservation and environmental protection only based on the utilization phase. The paper carried on the empirical research on the energy footprint of each life cycle of Petrol Automobile and Battery Electric Vehicle base on energy footprint model and the life cycle included the raw material production, manufacture and use stages. The energy footprint in raw material production phase included the energy consumption in the stages of vehicle body raw materials production, gas production and battery raw materials production, the energy footprint in manufacturing stage included the energy consumption in the stages of vehicle body and battery material manufacturing, and the energy footprint in utilization stage is the whole energy consumption in scrap mileage. The research results show that the total energy footprints in the stages of raw materials production, manufacturing and utilization were respectively 31.18 hm2 and 9.74 hm2, and among them, the energy footprints in stage of raw materials production of Petrol Automobile and Battery Electric Vehicle were respectively 0.015 hm2 and 0.014 hm2, and the energy footprints in the stages of gas production and battery raw materials production process were respectively 2.83 hm2 and 0.003 2 hm2; the energy footprint in the stage of Petrol Automobile and Battery Electric Vehicle body manufacturing was 0.29 hm2 and the energy footprint in battery raw materials production was 0.000 037 hm2; the energy footprints in the utilization stage of Petrol Automobile and Battery Electric Vehicle were respectively 28.04 hm2 and 9.4 hm2. From the point of the phase composition of energy footprint, the energy footprint of Petrol Automobile and Battery Electric Vehicle was mainly sourced the stage of utilization stage, and the energy footprint in the material production and manufacturing stage was relatively small. From the point of the source of energy footprint, the energy consumption in gas production stage is the main part of energy footprint of Petrol Automobile and the energy consumption in power plant is the main part of energy footprint of Battery Electric Vehicle. Therefore, controlling the energy consumption in the process of gasoline refining and utilization is the main way to reduce Petrol Automobile energy footprint and controlling the energy consumption of power plant is the main way to reduce the energy footprint of Battery Electric Vehicle. The paper provided a quantitative method to calculate the energy consumption of the product life cycle and the research process and method would benefit the evaluation of energy consumption of industrial products.

Key words petrol automobiles; battery electric vehicles; energy footprints

[26]天津市质量技术监督局. DB12/046-2008产品单位产量综合能耗计算方法及限额[S].2011. [Tianjin Municipal Bureau of Quality and Technical Supervision. DB12/046-2008 Method and Limit of Comprehensive Energy Consumption Per Unit Product [S]. 2011.]

[27]何小明,杨林,等.电动汽车用镍氢蓄电池组热量仿真与控制[J].汽车技术,2004,(6):10-12.[He Xiaoming, Yang Lin,et al. NIMH Battery Heat Simulation and Control of Electric Vehicles[J]. AutomotiveTechnology,2004,(6):10-12.]

[28]王善生,甘凌霄. 基于“能源碳足迹”的纯电动汽车的技术经济研究[J].电网与清洁能源,2012, 28 (4):77-85.[Wang Shansheng, Gan Lingxiao. Technology Economic Research Based on the ‘Carbon Footprint Energy of Pure Electric Vehicle [J]. Grid and Clean Energy, 2012,28 (4):77-85.]

Abstract In contrast with Petrol Automobile, Battery Electric Vehicle have the advantages of low energy consumption and low pollution and so on. But it is biased to endow the Battery Electric Vehicle with the characteristics of energy conservation and environmental protection only based on the utilization phase. The paper carried on the empirical research on the energy footprint of each life cycle of Petrol Automobile and Battery Electric Vehicle base on energy footprint model and the life cycle included the raw material production, manufacture and use stages. The energy footprint in raw material production phase included the energy consumption in the stages of vehicle body raw materials production, gas production and battery raw materials production, the energy footprint in manufacturing stage included the energy consumption in the stages of vehicle body and battery material manufacturing, and the energy footprint in utilization stage is the whole energy consumption in scrap mileage. The research results show that the total energy footprints in the stages of raw materials production, manufacturing and utilization were respectively 31.18 hm2 and 9.74 hm2, and among them, the energy footprints in stage of raw materials production of Petrol Automobile and Battery Electric Vehicle were respectively 0.015 hm2 and 0.014 hm2, and the energy footprints in the stages of gas production and battery raw materials production process were respectively 2.83 hm2 and 0.003 2 hm2; the energy footprint in the stage of Petrol Automobile and Battery Electric Vehicle body manufacturing was 0.29 hm2 and the energy footprint in battery raw materials production was 0.000 037 hm2; the energy footprints in the utilization stage of Petrol Automobile and Battery Electric Vehicle were respectively 28.04 hm2 and 9.4 hm2. From the point of the phase composition of energy footprint, the energy footprint of Petrol Automobile and Battery Electric Vehicle was mainly sourced the stage of utilization stage, and the energy footprint in the material production and manufacturing stage was relatively small. From the point of the source of energy footprint, the energy consumption in gas production stage is the main part of energy footprint of Petrol Automobile and the energy consumption in power plant is the main part of energy footprint of Battery Electric Vehicle. Therefore, controlling the energy consumption in the process of gasoline refining and utilization is the main way to reduce Petrol Automobile energy footprint and controlling the energy consumption of power plant is the main way to reduce the energy footprint of Battery Electric Vehicle. The paper provided a quantitative method to calculate the energy consumption of the product life cycle and the research process and method would benefit the evaluation of energy consumption of industrial products.

Key words petrol automobiles; battery electric vehicles; energy footprints

[26]天津市质量技术监督局. DB12/046-2008产品单位产量综合能耗计算方法及限额[S].2011. [Tianjin Municipal Bureau of Quality and Technical Supervision. DB12/046-2008 Method and Limit of Comprehensive Energy Consumption Per Unit Product [S]. 2011.]

[27]何小明,杨林,等.电动汽车用镍氢蓄电池组热量仿真与控制[J].汽车技术,2004,(6):10-12.[He Xiaoming, Yang Lin,et al. NIMH Battery Heat Simulation and Control of Electric Vehicles[J]. AutomotiveTechnology,2004,(6):10-12.]

[28]王善生,甘凌霄. 基于“能源碳足迹”的纯电动汽车的技术经济研究[J].电网与清洁能源,2012, 28 (4):77-85.[Wang Shansheng, Gan Lingxiao. Technology Economic Research Based on the ‘Carbon Footprint Energy of Pure Electric Vehicle [J]. Grid and Clean Energy, 2012,28 (4):77-85.]

Abstract In contrast with Petrol Automobile, Battery Electric Vehicle have the advantages of low energy consumption and low pollution and so on. But it is biased to endow the Battery Electric Vehicle with the characteristics of energy conservation and environmental protection only based on the utilization phase. The paper carried on the empirical research on the energy footprint of each life cycle of Petrol Automobile and Battery Electric Vehicle base on energy footprint model and the life cycle included the raw material production, manufacture and use stages. The energy footprint in raw material production phase included the energy consumption in the stages of vehicle body raw materials production, gas production and battery raw materials production, the energy footprint in manufacturing stage included the energy consumption in the stages of vehicle body and battery material manufacturing, and the energy footprint in utilization stage is the whole energy consumption in scrap mileage. The research results show that the total energy footprints in the stages of raw materials production, manufacturing and utilization were respectively 31.18 hm2 and 9.74 hm2, and among them, the energy footprints in stage of raw materials production of Petrol Automobile and Battery Electric Vehicle were respectively 0.015 hm2 and 0.014 hm2, and the energy footprints in the stages of gas production and battery raw materials production process were respectively 2.83 hm2 and 0.003 2 hm2; the energy footprint in the stage of Petrol Automobile and Battery Electric Vehicle body manufacturing was 0.29 hm2 and the energy footprint in battery raw materials production was 0.000 037 hm2; the energy footprints in the utilization stage of Petrol Automobile and Battery Electric Vehicle were respectively 28.04 hm2 and 9.4 hm2. From the point of the phase composition of energy footprint, the energy footprint of Petrol Automobile and Battery Electric Vehicle was mainly sourced the stage of utilization stage, and the energy footprint in the material production and manufacturing stage was relatively small. From the point of the source of energy footprint, the energy consumption in gas production stage is the main part of energy footprint of Petrol Automobile and the energy consumption in power plant is the main part of energy footprint of Battery Electric Vehicle. Therefore, controlling the energy consumption in the process of gasoline refining and utilization is the main way to reduce Petrol Automobile energy footprint and controlling the energy consumption of power plant is the main way to reduce the energy footprint of Battery Electric Vehicle. The paper provided a quantitative method to calculate the energy consumption of the product life cycle and the research process and method would benefit the evaluation of energy consumption of industrial products.

Key words petrol automobiles; battery electric vehicles; energy footprints