政策目标对REDD+机制收益分配的影响
2014-09-21盛济川曹杰周慧
盛济川 曹杰 周慧
摘要 本文通过建立一个简单支付模型研究了完全信息和不完全信息情景下经济目标、环境目标以及福利目标对于REDD+机制收益分配的影响。按照政策制定者知道的代理人机会成本的信息,本文设定了完全信息和不完全信息两种情景。政策制定者在两种情景中对于总毁林和潜在造林面积的分布、代理人总收益以及各代理人的毁林或潜在造林面积都拥有完全信息。为了研究不同的政策目标对REDD+机制效果的影响,本文设定三种政策目标:经济目标、环境目标以及福利目标。在此基础上,利用云南生态固碳造林项目的入户调查数据,对三种政策目标的效果进行了仿真研究。通过仿真研究分析了在完全信息和不完全信息条件下三种政策目标对于代理人受益、政策制定者收益以及减少毁林或增加造林总面积的影响。研究结果表明,在不完全信息情景下,政策制定者只能按照相同的补偿标准支付给所有代理人,因而三种政策目标的产出完全相同。对于经济目标的政策制定者而言,完全信息并不会带来森林面积的增加,但会导致REDD+剩余从代理人转移至政策制定者。相反,对于环境目标政策制定者而言,完全信息会导致森林面积增加而减少代理人的收益。对于福利目标政策制定者,完全信息并不会导致总体福利有所差别,且收益仍归代理人所有,而减少毁林或增加造林的面积大于等于不完全信息。
关键词 REDD+机制;完全信息;不完全信息;收益分配;政策目标
中图分类号 X196
文献标识码 A
文章编号 1002-2104(2014)09-0037-08
巴厘岛路线图将“REDD+机制”定义为“采取各种政策方法和积极的激励措施,以帮助发展中国家减少砍伐和森林退化,同时还包括森林保护、森林的可持续经营以及增加森林碳汇。 森林对CO2的吸收是碳捕捉和碳储存的一种重要途径[1],森林面积大约占全球陆地面积的15%[2],却储存了陆地生物圈约25%的碳[3]。因森林砍伐和森林退化所导致的温室气体排放目前已成为全球变暖的第二大主因,其总量已占到由人为因素导致碳排放总量的12-20%[4-5]。因而联合国气候变化框架公约(UNFCCC)在2007年提出了旨在减少森林砍伐和退化的REDD+机制,目前REDD+机制已成为最经济的气候变化减缓措施之一[6]。
在REDD+机制中,一个重要的因素是REDD+的机会成本。当取得的收益高于减少毁林或增加造林的机会成本时,减少森林砍伐或增加森林面积便成为有利可图的选项[7]。因而减少毁林或增加造林的机会成本信息成为REDD+机制得以有效实施的一个关键因素[8],政策制定者对于REDD+机制中代理人的私人机会成本信息的了解程度将直接影响到REDD+的收益分配。另一方面,在REDD+机制实施过程中政策制定者的政策目标也是多样的或多重的,例如在许多发展中国家环境和发展往往是政策目标的核心[9] ,而不同的政策目标也会对REDD+机制的效果产生不同的影响。为此,本文将设定三种政策目标:经济目标(即政策制定者收益最大化目标)、环境目标(即减少毁林或增加造林最大化目标)以及福利目标(即代理人收益最大化目标),通过建立一个简单支付模型用以研究在完全信息和不完全信息条件下不同政策目标对REDD+机制收益分配的影响。
1 不完全信息条件下REDD+机制的收益分配
由式(15)可以发现,在完全信息下政策制定者并没有获得REDD+剩余,同样代理人也没有获得这部分剩余。在环境目标下,政策制定者将低机会成本代理人的收益用于弥补高机会成本代理人的损失,因而代理人的收益水平并未提高,仍和基线情景下的收益水平相同,并低于完全信息下的收益水平。但是无差异代理人数量mE是最多的,因而减少毁林或增加造林的面积是最大的。
2.3 福利目标的均衡支付水平
一方面,为了实现福利目标,政策制定者需要最大化加入REDD+机制代理人的收益;另一方面,由于具有代理人机会成本的完全信息,政策制定者可以预算约束条件采取任意的方式分配REDD+剩余。为了简化模型,我们假定政策制定者按照罗尔斯的最大化最小值标准[10]进行收益分配,即选择使最后一个愿意加入REDD+机制的代理人收益最大化的分配方案。由于代理人的机会成本Yi/(Di+Ai)严格反映了代理人的收益排序,因此福利目标下的代理人总收益水平可以用式(12)来表示。因此根据罗尔斯的最大化最小值标准,应按照统一的补偿价格支付给所有的代理人,而国际碳信用价格r是政策制定者在不亏本的前提下可以提供给代理人的最高补偿价格。只要提供给代理人的补偿价格pi高于代理人i的机会成本,那么代理人i的收益水平仍然是好于基线情景下的收益水平。
3 基于云南生态固碳造林项目的仿真研究
3.1 项目概况
作为REDD+机制中的重要组成部分,生物固碳造林和沼气建设对减缓气候变化具有十分重要和不可替代的地位和作用。“云南省利用法国开发署贷款开展生物固碳造林和沼气建设项目”是利用法国开发署(AFD)贷款在中国实施的第一个生物固碳项目,该项目利用法国开发署贷款3 500万欧元,将在曲靖市、西双版纳傣族自治州和普洱市等3个州市的9个县(市)建设生物固碳林59,000.0hm2,其中人工造林45 584.7 hm2、低产林改造5 415.3 hm2、思茅松现有林培育8 000.0 hm2。项目建设期为5年,从2010至2014年,总投资为65 768.37万元,其中法国开发署贷款3 500.00万欧元。为研究完全信息和不完全信息条件下经济目标、环境目标和福利目标对于REDD+机制收益分配的影响,我们对项目区域9个县的279户进行了问卷调查,并使用这些入户数据数据进行仿真研究,入户调查数据的收集持续1个月。
3.2 机会成本和补偿价格的确定
面积是相同的。由于政策制定者不具有样本户的机会成本信息,因而按照统一的补偿价格进行支付,政策制定者无法从REDD+机制中获益,所有的REDD+剩余都归样本户所有。②在完全信息条件下,采用经济目标时,无论采用何种贴现率,政策制定者都无法把所有样本户的土地纳入REDD+机制之中,此时获得的REDD+剩余都归政策制定者所有。当采用福利目标时按照统一的补偿价格支付给所有样本户,其结果与经济目标相同,只不过所有的REDD+剩余都归样本户所有。而当采用环境目标时,样本户和政策制定者都无法获得REDD+剩余,但在贴现率为5%的情况下,90.64%的样本户土地会变为新造林,而贴现率为10%和15%时,所有的样本户都会选择参加生态固碳项目。因此在完全信息条件下,经济目标会使得REDD+剩余从样本户转移至政策制定者,而环境目标会使REDD+剩余从低机会成本样本户向高机会成本样本户转移,而福利目标下样本户的总收益以及增加造林面积和不完全信息是相同的。
4 结论与启示
REDD+机制是国际社会为减缓气候变化而提出的新举措,通过向发展中国家提供大量资金以减少森林砍伐和森林退化。本文通过建立一个简单支付模型研究了完全信息和不完全信息条件下不同政策目标对于REDD+机制收益分配的影响。
研究发现:无论采用何种政策目标,在不完全信息条件下,由于政策制定者不拥有各代理人机会成本信息,政策制定者只能按照相同的补偿标准支付给所有代理人。因而政策制定者无法从REDD+机制中获益,也无法对REDD+剩余进行分配,所有的REDD+剩余都归代理人所有。相比基线情景,代理人在不完全信息条件下可以从REDD+机制中获利。仿真研究的结果表明,所有政策目标的产出(即减少毁林和增加造林面积)是完全相同的。
在完全信息条件下:①政策制定者采用经济目标所得到的减少毁林量或增加造林量与不完全信息是一样的,只不过此时的REDD+剩余归政策制定者所有。当采用经济目标时,无论采用何种贴现率,政策制定者都无法把所有的土地纳入REDD+机制之中。②当政策制定者采用环境目标时,由于可以将低机会成本代理人的REDD+剩余用于对高机会成本代理人的补偿,因而在完全信息条件下的减少毁林量或增加造林量大于不完全信息,但是代理人总收益是一样的,只不过完全信息的存在导致了REDD+剩余的再分配。在环境目标下代理人和政策制定者都无法获得REDD+剩余,但会使得减少毁林量或增加造林面积显著增加。③当政策制定者采用福利目标时,代理人的总收益与不完全信息是相同的,而不同在于各代理人的收益分配。在完全信息条件下,各代理人的收益分配主要取决于政策制定者的偏好。如果采用罗尔斯的最大化最小值标准,所有代理人会获得相同的补偿价格,这就使得完全信息条件下的减少毁林量或增加造林量以及各代理人的收益与不完全信息是完全相同的。
本文中的REDD+支付模型只是对政策制定者复杂决策过程的简化,对于模型的适用性需要进一步研究。本文忽视了REDD+机制中的各种交易成本,特别是获取代理人的机会成本信息的成本,这些交易成本的存在可能会降低代理人加入REDD+机制的动机[14],因此需要重视REDD+中知识整合的管理能力[15]。此外REDD+监测、报告和验证体系(MRV)的成本以及环境规制计划所带来的各项成本[16]也被忽视,而这部分的成本也会对REDD+机制的收益分配产生重要的影响。对于经济目标和环境目标而言,机会成本信息的获取对于政策制定者而言是至关重要的;而对于福利目标而言则无足轻重,但是当REDD+剩余的分配不再按照罗尔斯的最大化最小值标准时,这些机会成本的信息就变得非常重要了。
(编辑:刘呈庆)
参考文献(References)
[1]张慧明,周德群,曹杰,等. 温室气体减排技术研究进展[J]. 中国科技论坛,2011,(9):104-109. [Zhang Huiming, Zhou Dequn, Cao Jie, et al. Research Progress of Reducing Greenhouse Gas Emissions [J]. Forum on Science and Technology in China, 2011, (9): 104-109.]
[2]Food and Agriculture Organization of the United Nations. Key Findings of Global Forest Resources Assessment 2010 [R]. Rome: Forest Resources Assessment, 2010.
[3]Bonan G B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests [J]. Science, 2008, 320:1444-1449.
[4]Sala O E, Ill F S C, Armesto J J, et al. Global Biodiversity Scenarios for the Year 2100 [J]. Science, 2000, 287: 1770-1774.
[5]Houghton R A. Carbon Flux to the Atmosphere from Landuse Changes: 1850-2005 [R]. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 2008.
[6]Stern N. The Economics of Climate Change: The Stern Review [M]. Cambridge, UK: Cambridge University Press, 2007.
[7]Groom B, Palmer C. Costeffective Provision of Environmental Services: The Role of Relaxing Market Constraints? [J]. Environment and Development Economics, 2010, 15 (2): 219-240.
[8]Delacote P, Palmer C, Bakkegaard R K, et al. Unveiling Information on Opportunity Costs in REDD: Who Obtains the Surplus When Policy Objectives Differ? [J]. Resource and Energy Economics, 2014, 36 (2): 508-527.
[9]Bulte E H, Lipper L, Stringer R, et al. Payments for Ecosystem Services and Poverty Reduction: Concepts, Issues, and Empirical Perspectives [J]. Environment and Development Economics, 2008, 13 (3): 245-254.
[10]Rawls J A. Theory of Justice [M]. Cambridge, Massachusetts, USA: Harvard University Press, 1971.
[11]Brner J, Wunder S. Paying for Avoided Deforestation in the Brazilian Amazon: From Cost Assessment to Scheme Design [J]. International Forestry Review, 2008, 10 (3): 496-511.
[12]Dutschke M, Wong J L P, Rumberg M. Value and Risks of Expiring Carbon Credits from CDM Afforestation and Reforestation [J]. Climate Policy, 2005, 5 (1): 109-125.
[13]李亮. 云南省1992-2007年森林植被碳储量动态变化及其碳汇潜力分析[D]. 昆明:云南财经大学,2012. [Li Liang. The Dynamic Changes and Potential of Forest Carbon Stock in Yunnan: 1992-2007 [D]. Kunming: Yunnan University of Finance and Economics, 2012.]
[14]Anthon S, Bogetoft P, Thorsen B. Socially Optimal Procurement with Tight Budgets and Rationing? [J]. Journal of Public Economics, 2007, 91 (7-8): 1625-1642.
[15]单海燕,王文平. 跨组织知识整合下的创新网络结构分析[J]. 中国管理科学,2012,20 (6):176-184. [Shan Haiyan, Wang Wenping. Analysis of the Structure of Interorganization Innovation Network during the Process of Knowledge Integration [J]. Chinese Journal of Management Science, 2012, 20 (6): 176-184.]
[16]张三峰,卜茂亮. 环境规制、环保投入与中国企业生产率:基于中国企业问卷数据的实证研究[J]. 南开经济研究,2011,(2):129-146. [Zhang Sanfeng, Pu Maoliang. Environmental Regulation, Environmental Protection Investment and Productivity: An Empirical Study Based on Questionnaire of Enterprises in China [J]. Nankai Economic Studies, 2011, (2): 129-146.]
Abstract The impacts of economic object, environmental object and poverty alleviation object on benefit distribution for REDD+ are analyzed by a simple payment model in two scenarios: asymmetric and full information for opportunity cost. According to agents opportunity costs the policy makers known, the scenarios of asymmetric and full information are established. The policy makers have full information about total distribution of deforestation and potential afforestation area, agents benefits, amount of agents deforestation or potential afforestation in both scenarios. In order to study the impacts of different policy objects on REDD+ results, economic object, environmental object and poverty alleviation object are set up in the paper. On this basis, the household survey data of ecological reforestation and carbon sequestration project in Yunnan is used to simulate the effects of three policy objectives. According to the simulation study, the impacts of three policy objects on agents benefits, benefits of policy makers and the avoided deforestation or increased afforestation are analyzed. The results show that policy makers can only pay same compensation to all agents in the scenario of asymmetric information. Therefore, the outputs of three policy objects are the same. Full information may not increase the forest area for the policy makers of economic object, but could lead to a redistribution of REDD+ surplus from agents to policy maker. By contrast, full information increases the forest area and reduces the agents benefits for the policy makers of environmental object. Full information makes no difference to overall welfare for the policy makers of poverty alleviation object, and the benefits remain belong the agents. The avoided deforestation or increased afforestation in the scenario of full information will be more than that in the scenario of asymmetric information.
Key words REDD+; asymmetric information; full information; profit distribution; policy object
[9]Bulte E H, Lipper L, Stringer R, et al. Payments for Ecosystem Services and Poverty Reduction: Concepts, Issues, and Empirical Perspectives [J]. Environment and Development Economics, 2008, 13 (3): 245-254.
[10]Rawls J A. Theory of Justice [M]. Cambridge, Massachusetts, USA: Harvard University Press, 1971.
[11]Brner J, Wunder S. Paying for Avoided Deforestation in the Brazilian Amazon: From Cost Assessment to Scheme Design [J]. International Forestry Review, 2008, 10 (3): 496-511.
[12]Dutschke M, Wong J L P, Rumberg M. Value and Risks of Expiring Carbon Credits from CDM Afforestation and Reforestation [J]. Climate Policy, 2005, 5 (1): 109-125.
[13]李亮. 云南省1992-2007年森林植被碳储量动态变化及其碳汇潜力分析[D]. 昆明:云南财经大学,2012. [Li Liang. The Dynamic Changes and Potential of Forest Carbon Stock in Yunnan: 1992-2007 [D]. Kunming: Yunnan University of Finance and Economics, 2012.]
[14]Anthon S, Bogetoft P, Thorsen B. Socially Optimal Procurement with Tight Budgets and Rationing? [J]. Journal of Public Economics, 2007, 91 (7-8): 1625-1642.
[15]单海燕,王文平. 跨组织知识整合下的创新网络结构分析[J]. 中国管理科学,2012,20 (6):176-184. [Shan Haiyan, Wang Wenping. Analysis of the Structure of Interorganization Innovation Network during the Process of Knowledge Integration [J]. Chinese Journal of Management Science, 2012, 20 (6): 176-184.]
[16]张三峰,卜茂亮. 环境规制、环保投入与中国企业生产率:基于中国企业问卷数据的实证研究[J]. 南开经济研究,2011,(2):129-146. [Zhang Sanfeng, Pu Maoliang. Environmental Regulation, Environmental Protection Investment and Productivity: An Empirical Study Based on Questionnaire of Enterprises in China [J]. Nankai Economic Studies, 2011, (2): 129-146.]
Abstract The impacts of economic object, environmental object and poverty alleviation object on benefit distribution for REDD+ are analyzed by a simple payment model in two scenarios: asymmetric and full information for opportunity cost. According to agents opportunity costs the policy makers known, the scenarios of asymmetric and full information are established. The policy makers have full information about total distribution of deforestation and potential afforestation area, agents benefits, amount of agents deforestation or potential afforestation in both scenarios. In order to study the impacts of different policy objects on REDD+ results, economic object, environmental object and poverty alleviation object are set up in the paper. On this basis, the household survey data of ecological reforestation and carbon sequestration project in Yunnan is used to simulate the effects of three policy objectives. According to the simulation study, the impacts of three policy objects on agents benefits, benefits of policy makers and the avoided deforestation or increased afforestation are analyzed. The results show that policy makers can only pay same compensation to all agents in the scenario of asymmetric information. Therefore, the outputs of three policy objects are the same. Full information may not increase the forest area for the policy makers of economic object, but could lead to a redistribution of REDD+ surplus from agents to policy maker. By contrast, full information increases the forest area and reduces the agents benefits for the policy makers of environmental object. Full information makes no difference to overall welfare for the policy makers of poverty alleviation object, and the benefits remain belong the agents. The avoided deforestation or increased afforestation in the scenario of full information will be more than that in the scenario of asymmetric information.
Key words REDD+; asymmetric information; full information; profit distribution; policy object
[9]Bulte E H, Lipper L, Stringer R, et al. Payments for Ecosystem Services and Poverty Reduction: Concepts, Issues, and Empirical Perspectives [J]. Environment and Development Economics, 2008, 13 (3): 245-254.
[10]Rawls J A. Theory of Justice [M]. Cambridge, Massachusetts, USA: Harvard University Press, 1971.
[11]Brner J, Wunder S. Paying for Avoided Deforestation in the Brazilian Amazon: From Cost Assessment to Scheme Design [J]. International Forestry Review, 2008, 10 (3): 496-511.
[12]Dutschke M, Wong J L P, Rumberg M. Value and Risks of Expiring Carbon Credits from CDM Afforestation and Reforestation [J]. Climate Policy, 2005, 5 (1): 109-125.
[13]李亮. 云南省1992-2007年森林植被碳储量动态变化及其碳汇潜力分析[D]. 昆明:云南财经大学,2012. [Li Liang. The Dynamic Changes and Potential of Forest Carbon Stock in Yunnan: 1992-2007 [D]. Kunming: Yunnan University of Finance and Economics, 2012.]
[14]Anthon S, Bogetoft P, Thorsen B. Socially Optimal Procurement with Tight Budgets and Rationing? [J]. Journal of Public Economics, 2007, 91 (7-8): 1625-1642.
[15]单海燕,王文平. 跨组织知识整合下的创新网络结构分析[J]. 中国管理科学,2012,20 (6):176-184. [Shan Haiyan, Wang Wenping. Analysis of the Structure of Interorganization Innovation Network during the Process of Knowledge Integration [J]. Chinese Journal of Management Science, 2012, 20 (6): 176-184.]
[16]张三峰,卜茂亮. 环境规制、环保投入与中国企业生产率:基于中国企业问卷数据的实证研究[J]. 南开经济研究,2011,(2):129-146. [Zhang Sanfeng, Pu Maoliang. Environmental Regulation, Environmental Protection Investment and Productivity: An Empirical Study Based on Questionnaire of Enterprises in China [J]. Nankai Economic Studies, 2011, (2): 129-146.]
Abstract The impacts of economic object, environmental object and poverty alleviation object on benefit distribution for REDD+ are analyzed by a simple payment model in two scenarios: asymmetric and full information for opportunity cost. According to agents opportunity costs the policy makers known, the scenarios of asymmetric and full information are established. The policy makers have full information about total distribution of deforestation and potential afforestation area, agents benefits, amount of agents deforestation or potential afforestation in both scenarios. In order to study the impacts of different policy objects on REDD+ results, economic object, environmental object and poverty alleviation object are set up in the paper. On this basis, the household survey data of ecological reforestation and carbon sequestration project in Yunnan is used to simulate the effects of three policy objectives. According to the simulation study, the impacts of three policy objects on agents benefits, benefits of policy makers and the avoided deforestation or increased afforestation are analyzed. The results show that policy makers can only pay same compensation to all agents in the scenario of asymmetric information. Therefore, the outputs of three policy objects are the same. Full information may not increase the forest area for the policy makers of economic object, but could lead to a redistribution of REDD+ surplus from agents to policy maker. By contrast, full information increases the forest area and reduces the agents benefits for the policy makers of environmental object. Full information makes no difference to overall welfare for the policy makers of poverty alleviation object, and the benefits remain belong the agents. The avoided deforestation or increased afforestation in the scenario of full information will be more than that in the scenario of asymmetric information.
Key words REDD+; asymmetric information; full information; profit distribution; policy object