APP下载

围封禁牧对小叶锦鸡儿灌丛化草原群落组成和结构的影响

2014-09-19赵婷婷赵念席高玉葆

生态学报 2014年15期
关键词:样区禾草锦鸡儿

赵婷婷, 赵念席, 高玉葆

(南开大学生命科学学院, 天津 300071)

内蒙古典型草原是欧亚草原生态系统的代表性组成部分之一,在区域生态环境与社会经济方面起着重要作用[1],但近几十年来,随着过度放牧与全球气候变化,内蒙古草原退化严重,约70%的草原地区处于退化状态[2-3]。草原退化的重要后果之一是典型草原向灌丛化草原转变[4],世界范围内许多干旱草原生态系统发生了明显的多年生禾草盖度降低与木本灌木盖度增加的现象[5],在内蒙古典型草原区,多年生灌木物种小叶锦鸡儿种群扩展,盖度增大,也已成为了普遍现象,表现为典型草原灌丛化加重[6]。

为保护草原生态系统与恢复植被生产力,一系列措施被投入实践,例如围封、重新播种和/或肥料的使用[7]。其中,设置围栏禁牧因其简单有效,在近几十年中广泛应用于全世界的草原保护[8-9]。对于去除放牧干扰后小叶锦鸡儿(Caraganamicrophylla)灌丛化草原能否恢复,不同学者间意见并不一致。有学者指出小叶锦鸡儿灌丛化草原具有显著次生性质,属于非气候性顶级群落,在去除干扰后可以恢复原貌;小叶锦鸡儿是退化草原恢复演替过程中的消退种,随着恢复演替的进行,在群落中的作用将逐年降低[10-11]。但也有学者认为典型草原与灌丛化草原之间的转变存在阈值,仅仅去除放牧干扰,不能使小叶锦鸡儿灌丛化草原恢复原貌[12]。本文通过在小叶锦鸡儿灌丛化草原内设置持续放牧样区和围封禁牧样区,研究了两种利用方式对草原群落组成和结构的影响,并重点探讨了小叶锦鸡儿种群与灌丛间植物群落在围封禁牧后的动态变化,即从空间与时间两方面展开研究,以探究围封禁牧后小叶锦鸡儿灌丛化草原能否恢复,从而为内蒙古退化草原生态系统的恢复提供一定的理论基础和实验证据。

1 实验方法

1.1 研究区域自然概况

研究区域位于内蒙古锡林郭勒典型草原区,气候属半干旱草原气候,年降水量240 mm左右,主要集中于6—8月份,年平均气温2.7 ℃,最冷月(1月)平均气温为-21.0 ℃,最热月(7月)平均气温为23.3 ℃,年日照时数2950 h左右,无霜期约为110 d,土壤类型为栗钙土。近几十年由于过度放牧,草原退化严重,草本层盖度减少,多年生禾草优势度下降,小叶锦鸡儿分布逐渐增加。于2003年,在小叶锦鸡儿灌丛化草原选取典型样地(北纬43°52′30″—43°52′33″,东经116°22′38″—116°22′53″),设置禁牧样区(EG)和放牧样区(G),两样区间仅以围栏隔开,在不同处理前具有原生群落和生境的一致性。其中,放牧样区的放牧强度为每公顷3只羊,为中等放牧强度。该样地在2003年前一直处于自由放牧状态,草地发生明显退化,灌丛化严重。

1.2 研究方法

1.2.1 小叶锦鸡儿性状测定

2008—2011年7月底,在禁牧样区内作5个40 m×20 m的小叶锦鸡儿分布样方,调查小叶锦鸡儿种群盖度,并在样区内随机选取25株样本株以进行植物性状测定:每株样本株选择5个具有代表性的当年枝,测定复叶数与中部复叶面积,样品于80 ℃烘箱中烘干48 h至恒重,测定当年枝总干重、叶干重。其中2009—2011年,还测定了叶片的比叶重和氮磷含量,每样本株选择5片向阳、年轻而充分展开的叶片,将贴有复叶的A4纸扫描,用PHOTOSHOP计算复叶面积,揭下叶片后于80 ℃烘箱中烘干48 h至恒重,测定复叶质量,计算得到比叶重(复叶质量/复叶面积),所得叶片磨碎后用于测定叶片氮磷含量,氮含量的测定采用半微量凯氏定氮法,磷含量的测定采用钼锑抗比色法,根据叶片质量和面积可以分别得到以面积和质量为单位的叶片氮磷含量。

2011年7月底,在放牧样区内对小叶锦鸡儿种群进行相同的观测研究。样品采集与测定方法均参照Cornelissen等[13]

1.2.2 小叶锦鸡儿灌丛间群落调查

2008—2011年8月中旬,在禁牧样区采用常规1 m×1 m样方法调查植物群落特征,在小叶锦鸡儿灌丛间(即样方内不包含小叶锦鸡儿)随机选择,调查植物种类并测定植株高度、密度,并按物种剪取植物地上部,分别装入信封,带回实验室80 ℃烘干至恒重,称重,测定地上部分生物量,计算各个物种以及各功能群[14](多年生根茎禾草、多年生丛生禾草、多年生杂类草、灌木和半灌、1年生植物与多年生禾草)的重要值:

重要值=(相对高度+相对密度+相对地上生物量)/3

2011年8月中旬,在放牧样区内进行相同的观测研究。

1.3 数据分析

计算禁牧样区不同功能群重要值和小叶锦鸡儿盖度对围封的响应比(response ratio),即禁牧样区对应年份该性状/2008年该性状,响应比常用来判断性状对各种环境因子的响应,在实际应用中,常以其自然对数的形式显示,正值代表环境因子对该性状存在促进作用,负值代表环境因子对该性状存在抑制作用,绝对值越大,说明作用越强[15-16]。

利用单因素方差分析分析不同年份间禁牧样区小叶锦鸡儿植物性状与群落特征的差异;利用t检验分析不同样区内小叶锦鸡儿种群和群落特征(2011年测定)的差异显著性;对小叶锦鸡儿盖度与各功能群重要值间的关系分别按禁牧样区年间数据和不同样区同年数据进行汇总,作Spearman秩相关分析。以上数据分析均在SPSS13.0中完成,分析结果以EXCEL 2003作图。

2 结果

2.1 小叶锦鸡儿植株性状变化

不同处理8a后,禁牧样区小叶锦鸡儿盖度(0.042)显著小于放牧样区(0.088)(P=0.007);禁牧样区内小叶锦鸡儿种群盖度响应比呈负值,随围封年限增加而明显降低(图1),即样区间及围封禁牧年际动态都说明小叶锦鸡儿种群在围封禁牧后开始衰退。

禁牧样区与放牧样区间除复叶数以外各项形态指标均不存在显著差异;禁牧样区内当年枝形态性状在年际间存在显著差异,但并没有明显趋势(表1)。禁牧样区单位质量叶磷含量显著小于放牧样区;禁牧样区内小叶锦鸡儿叶片氮磷营养含量均有随围封年限增加而显著减小的趋势,特别是单位面积的氮磷含量(表2)。

图1 禁牧样区不同年份小叶锦鸡儿盖度响应比

表1小叶锦鸡儿当年枝形态性状

Table1Morphologicaltraitsoffirst-yearshootsofCaraganamicrophylla(Means±SE)

性状 Trait禁牧样区 plot grazing exclusion (EG)2008200920102011放牧样区Plot grazing (G)2011每枝总干重 Dry weight per shoot/g1.48±0.09b0.38±0.08c1.94±0.10a0.45±0.04c0.46±0.02每枝叶干重Leaf dry weight per shoot/g0.99±0.07a0.25±0.05b1.14±0.06a0.32±0.02b0.31±0.02当年枝长 Shoot length/cm27.60±0.82b8.00±1.08d34.05±0.97a12.82±0.41c13.95±0.48每枝复叶数 Compound leaves number per shoot25.75±1.28a13.63±1.40b26.01±1.21a15.44±0.67b18.44±0.70∗复叶面积Compound leaf area/cm27.92±0.71a3.54±0.37c7.02±0.37a4.90±0.32b4.52±0.19

同一行数据内不同字母表示年际差异显著,*表示不同样区间差异显著(P<0.05)

表2 小叶锦鸡儿叶氮磷含量与比叶重

同一行数据内不同字母表示年际差异显著,*表示不同样区间差异显著(P<0.05)

2.2 小叶锦鸡儿灌丛间草本植物群落结构特征与物种组成变化

禁牧样区内灌丛间植物地上生物量显著高于放牧样区;而禁牧样区内灌丛间植物地上生物量与密度在年际间波动较大,没有显著的变化趋势(图2)。

不同处理8a后,稗草、狗尾草、猪毛菜、灰绿藜等在放牧样区均有分布,与其在禁牧样区已经基本消失的状况有所不同,对于不同植物功能群,多年生从生禾草在禁牧样区优势显著高于放牧样区,多年生杂类草和1年生植物则相反(表3);在禁牧样区,草本群落的物种组成随围封年限增加发生了显著变化:多年生根茎禾草、多年生丛生禾草与多年生杂类草在群落中重要值随围封年限增加均有所增加,其中多年生根茎禾草与丛生禾草变化趋势一致,不过多年生根茎禾草年际差异不显著,1年生植物随围封年限增加逐渐退出群落,而灌木和半灌木在小叶锦鸡儿灌丛间仅有零星分布(图3,表3)。

图2 草本群落地上生物量与密度

表3主要物种及各功能群重要值

Table3Theimportancevaluesofdifferentmainspeciesandfunctionalgroups

物种 Species禁牧样区 plot EG2008200920102011放牧样区plot G2011多年生根茎禾草 Perennial rhizome grasses0.108±0.0280.180±0.0280.163±0.0250.189±0.0320.197±0.026羊草 Leymus chinensis0.108±0.0280.180±0.0280.163±0.0250.189±0.0320.197±0.026多年生丛生禾草 Perennial bunch grasses0.405±0.036b0.535±0.032ab0.517±0.028ab0.612±0.047a0.321±0.049∗大针茅 Stipa grandis0.139±0.018b0.204±0.042ab0.248±0.021a0.215±0.023ab0.011±0.008∗克氏针茅 Stipa krylovii0.047±0.014———0.119±0.036∗糙隐子草 Cleistogenes squarosa0.199±0.034c0.315±0.046ab0.262±0.026bc0.383±0.030a0.189±0.043∗羽茅 Achnatherum sibiricum0.021±0.0130.016±0.0160.007±0.0070.014±0.0080.002±0.002多年生杂类草 Perennial forbs0.134±0.019b0.230±0.017a0.174±0.016ab0.198±0.020ab0.311±0.040∗苔草 Carex korshinskii0.087±0.020b0.204±0.026a0.078±0.011b0.133±0.017b0.251±0.039∗细叶韭 Allium tenuissimum0.029±0.0080.023±0.0140.020±0.0040.030±0.0070.012±0.004∗糙苏 Phlomis umbrosa0.010±0.006bc0.001±0.001c0.058±0.013a0.029±0.008ab0.013±0.0051年生植物 Annuals0.353±0.024a0.040±0.012c0.144±0.017b0.001±0.001c0.171±0.020∗灰绿藜 Chenopodium glaucum0.044±0.009—0.074±0.015—0.006±0.003∗轴藜 Axyris amaranthoides0.048±0.012a—0.010±0.004b—0.020±0.004∗猪毛菜 Salsola collina0.261±0.019a0.040±0.012b0.057±0.012b—0.018±0.003∗稗草 Echinochloa crusgalli————0.053±0.014∗狗尾草 Setaria viridis———0.001±0.0010.050±0.012∗灌木和半灌木Shrubs and semi-shrubs—0.014±0.0140.001±0.001——冷蒿 Artemisia frigida—0.014±0.014———胡枝子 Lespedeza bicolor——0.001±0.001——

同一行数据内不同字母表示年际差异显著,*表示不同样区间差异显著(P<0.05)

图3 不同年份各功能群重要值响应比

2.3 小叶锦鸡儿种群盖度与各功能群重要值关系

小叶锦鸡儿种群盖度与各功能群重要值呈现出不同的关系,并且根据禁牧样区年间数据和不同样区同年数据分别进行分析,趋势完全一致:小叶锦鸡儿种群盖度与多年生丛生禾草显著负相关,呈现此消彼长的关系,说明两者间可能存在竞争关系;与一年生植物显著正相关,说明伴随着小叶锦鸡儿的衰退,1年生植物也逐渐退出群落;与多年生根茎禾草和多年生杂类草间没有显著的相关关系(图4)。

3 结论和讨论

本研究发现,无论是禁牧样区年际比较,还是采取不同利用方式8a后禁牧样区与放牧样区间的比较均显示,围封禁牧后小叶锦鸡儿盖度降低,灌丛间草本植物群落结构发生变化,多年生丛生禾草比例增加,这说明去除放牧干扰可以促进小叶锦鸡儿灌丛化草原向典型草原的恢复。已有研究表明,小叶锦鸡儿灌丛可以改善退化草原土壤环境,减缓风蚀水蚀,妨碍牲畜采食,对草本植物有一定的保护作用,并能成为重要的牧草种子库,为其在灌丛下定居与发育提供可能,从而有利于牧压减轻后牧草迅速由灌丛内部和边缘向灌丛外发展[17-18]。在退化草原的恢复过程中,邵新庆等[19]认为豆科植物在恢复早期能改善提高土壤养分,同时一年生先锋植物在恢复早期对群落恢复贡献较大,本研究也发现围封禁牧5年后一年生植物在群落中比例较高,小叶锦鸡儿灌丛的沃岛效应和一年生植物的枯落物为其它植物的定居创造了稳定的土壤环境。随后,多年生禾草随围封年限增加在群落中的比例增加,这与已有研究结果一致,因为围封措施去除了家畜的选择性取食,有利于禾草与其它物种的竞争[20]。在多年生禾草中大针茅和糙隐子草的增加最为明显,前者具有较深的根系,在资源利用方面存在优势,而后者是牲畜喜食的类型,禁牧后得以迅速扩张[21]。

图4 小叶锦鸡儿盖度与各功能群重要值关系

小叶锦鸡儿盖度降低可能是由于禾草与其竞争造成的,本研究中小叶锦鸡儿盖度与多年生丛生禾草在群落中的重要值呈显著负相关,在另一研究中也曾发现小叶锦鸡儿生长状况与草本层(特别是禾草)生物量呈负相关[22],这与草本植物的竞争会对灌木生长造成负面影响的结论一致[23-24]。另外,小叶锦鸡儿是构件生物,部分构件死亡衰退不代表全株的死亡,因而本研究发现小叶锦鸡儿的衰退体现在盖度的降低上,而并不体现在当年枝生长状况的变化上。基于小叶锦鸡儿这一特性,灌丛化草原内小叶锦鸡儿的退出需要长时间去除放牧干扰才能实现。裴浩等[25]也指出小叶锦鸡儿建群的片段演替速率较慢,它的发展与衰退是一个较长的动态过程。Valone等[26]指出时间尺度在草原与灌丛化草原间的转换方面十分重要,对于灌丛化草原,多年生禾草对去除放牧作出响应需要至少20a的时间。本研究也发现,围封8a后,小叶锦鸡儿在样区内仍然占据一定生境,而灌丛间的草本植物群落优势种为糙隐子草,属于典型草原植物群落退化演替序列中度退化时期的优势种或主要伴生种[27],这说明小叶锦鸡儿建群的灌丛化草原要恢复到羊草或大针茅占优势的顶级群落需要很长的时间。

除了盖度以外,禁牧样区内小叶锦鸡儿单位叶面积的氮磷含量随围封年限增加而减少的趋势显著,而以单位面积表现的性状在生理角度上十分重要,因为光合作用等生理进程中的步骤,如光能截获和二氧化碳扩散等是通过单位叶表面积通量发生的[28]。氮是光合作用相关蛋白(特别是Rubp酶)的重要组成成分,最大光合速率经常与叶氮含量正相关[29];而生长速率假说(growth rate hypothesis,GRH)指出,生长依赖于富含磷的核糖体驱动的蛋白质合成,磷含量与植物生长速率关系密切[30]。较低的氮磷含量可能伴随着较低的光合能力与生长速率,叶片氮磷含量的减少可能也与小叶锦鸡儿在禁牧后的衰退有关。另外,禁牧样区小叶锦鸡儿叶片磷含量显著小于放牧样区,而氮含量差异不显著,叶片磷含量可能与小叶锦鸡儿的衰退关系更密切。对于小叶锦鸡儿来说,虽然当年枝生长状况尚未体现出显著差异,但小叶锦鸡儿叶片氮磷含量的减少可能预示了未来部分构件甚至全株在围封禁牧后的衰亡,这种推测是否成立需要进一步研究。

综上所述,本研究发现小叶锦鸡儿灌丛化草原在围封8a后有所恢复:灌丛间草本植物群落物种组成发生了显著变化,多年生丛生禾草逐渐占据优势,1年生植物逐渐退出群落;小叶锦鸡儿种群发生衰退,主要体现于盖度的降低上,并与多年生丛生禾草重要值的上升密切相关,说明禾草与小叶锦鸡儿的竞争可能是导致其在禁牧后发生衰退的原因。本文认为去除放牧干扰后,小叶锦鸡儿灌丛化草原可以恢复,但要恢复到以羊草和大针茅建群的典型草原,还需要更长的时间,故而是一个长期的过程,有待进一步的长期观测。

:

[1]Kang L, Han X G, Zhang Z B, Sun O J X. Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362(1482): 997-1008.

[2]Tong C, Wu J, Yong S, Yang J, Yong W. A landscape-scale assessment of steppe degradation in the Xilin river basin, Inner Mongolia, China. Journal of Arid Environments, 2004, 59(1): 133-149.

[3]Li A, Wu J G, Huang J H. Distinguishing between human-induced and climate-driven vegetation changes: a critical application of RESTREND in inner Mongolia. Landscape Ecology, 2012, 27(7): 969-982.

[4]Whitford W G. Desertification and animal biodiversity in the desert grasslands of North America. Journal of Arid Environments, 1997, 37(4): 709-720.

[5]van Auken O W. Shrub invasions of North American semiarid grasslands. Annual Review of Ecology and Systematics, 2000, 31(1), 197-215.

[6]Xiong X G, Han X G, Bai Y F, Pan Q M. Increased distribution ofCaraganamicrophyllain rangelands and its causes and consequences in Xilin River Basin. Acta Prataculturae Sinica, 2003, 12(3): 57-62.

[7]Akiyama T, Kawamura K. Grassland degradation in China: methods of monitoring, management and restoration. Grassland Science, 2007, 53(1): 1-17.

[8]Spooner P, Lunt I, Robinson W. Is fencing enough? The short-term effects of stock exclusion in remnant grassy woodlands in southern NSW. Ecological Management & Restoration, 2002, 3(2): 117-126.

[9]Yan Y C, Tang H P, Xin X P, Wang X. Advances in research on the effects of exclosure on grasslands. Acta Ecologica Sinica, 2009, 29(9): 5039-5046.

[10]Zhou D W.Caraganamicrophyllashrubland of Inner Mongolia. Inner Mongolia Prataculture, 1990, (3): 17-19.

[11]Li Z H, Liu Z L, He T. The research on the dynamics of community characters of degeneratedLeymuschinensesteppe during recovering succession. Journal of Arid Land Resources and Environment, 1993, 7(3/4): 279-289.

[12]Xiong X G, Han X G, Chen Q S, Mi X C. Application of the equilibrium and non-equilibrium ecology to the dynamics of the steppe grazing system in Xilin River Basin, Inner Mongolia. Acta Ecologica Sinica, 2004, 24(10): 2165-2170.

[13]Cornelissen J H C, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich D E, Reich P B, ter Steege H, Morgan H D, van der Heijden M G A, Pausas J G, Poorter H. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51(4): 335-380.

[14]Bai Y F, Han X G, Wu J G, Chen Z Z, Li L H. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431(7005): 181-184.

[15]Violle C, Richarte J, Navas M L. Effects of litter and standing biomass on growth and reproduction of two annual species in a Mediterranean old-field. Journal of Ecology, 2006, 94(1): 196-205.

[16]Ostertag R. Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests. Plant and Soil, 2010, 334(1/2): 85-98.

[17]Li X Y, Zhang S Y, Peng H Y, Hu X, Ma Y J. Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agricultural and Forest Meteorology, 2013, 171-172: 20-30.

[18]He S F, Jiang D M, Li X L, Alamusa. Important value and niche of herbages inCaraganamicrophyllasand-fixing communities. Journal of Arid Land Resources and Environment, 2007, 21(10): 150-155.

[19]Shao X Q, Wang K, Wang Y W, Liu G H. Dynamics of plant community during natural restoration and succession of the Inner Mongolia Steppe. Acta Ecologica Sinica, 2008, 28(2): 855-861.

[20]van der Wal R, Bardgett R D, Harrison K A, Stien A. Vertebrate herbivores and ecosystem control: cascading effects of faeces on tundra ecosystems. Ecography, 2004, 27(2): 242-252.

[21]Yu X Z, He X, Zhang T, Wang W. Response of leaf structures of 8 plants to grazing prohibition in degraded grassland of Inner Mongolia. Acta Ecologica Sinica, 2007, 27(4): 1638-1645.

[22]Zhao T T, Li J P, Zhang X J, Zhao N X, Gao Y B. Photosynthetic and morphological characters ofCaraganamicrophyllain different slope aspects and positions. Acta Ecologica Sinica, 2011, 31(3): 163-168.

[23]Clary J, Savé R, Biel C, de Herralde F. Water relations in competitive interactions of Mediterranean grasses and shrubs. Annals of Applied Biology, 2004, 144(2): 149-155.

[24]Grellier S, Barot S, Janeau J L, Ward D. Grass competition is more important than seed ingestion by livestock forAcaciarecruitment in South Africa. Plant Ecology, 2012, 213(6): 899-908.

[25]Pei H, Ao Y H. Mosaic structure and community succession stage in grassland community. Grassland of China, 1993, (4): 35-37.

[26]Valone T J, Meyer M, Brown J H, Chew R M. Timescale of perennial grass recovery in desertified arid grasslands following livestock removal. Conservation Biology, 2002, 16(4): 995-1002.

[27]Liu ZL, Wang W, Hao D Y, Liang C Z. Probes on the degeneration and recovery succession mechanisms of Inner Mongolia steppe. Journal of Arid Land Resources and Environment, 2002, 16(1): 84-91.

[28]Hikosaka K. Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. Journal of Plant Research, 2004, 117(6): 481-494.

[29]Reich P B, Ellsworth D S, Walters M B, Vose J M, Gresham C, Volin J C, Bowman W D. Generality of leaf trait relationships: a test across six biomes. Ecology, 1999, 80(6): 1955-1969.

[30]Elser J J, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner R W. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 2003, 6(10): 936-943.

参考文献:

[6]熊小刚, 韩兴国, 白永飞, 潘庆民. 锡林河流域草原小叶锦鸡儿分布增加的趋势、原因和结局. 草业学报, 2003, 12(3): 57-62.

[9]闫玉春, 唐海萍, 辛晓平, 王旭. 围封对草地的影响研究进展. 生态学报, 2009, 29(9): 5039-5046.

[10]周道玮. 内蒙古小叶锦鸡儿灌丛化草地. 内蒙古草业, 1990, (3): 17-19.

[11]李政海, 刘钟龄, 何涛. 内蒙古退化草原恢复演替进程中植物群落特征的分析. 干旱区资源与环境, 1993, 7(3/4): 279-289.

[12]熊小刚, 韩兴国, 陈全胜, 米湘成. 平衡与非平衡生态学在锡林河流域典型草原放牧系统中的应用. 生态学报, 2004, 24(10): 2165-2170.

[18]贺山峰, 蒋德明, 李晓兰, 阿拉木萨. 小叶锦鸡儿固沙群落草本种群重要值与生态位的研究. 干旱区资源与环境, 2007, 21(10): 150-155.

[19]邵新庆, 王堃, 王赟文, 刘贵河. 典型草原自然恢复演替过程中植物群落动态变化. 生态学报, 2008, 28(2): 855-861.

[21]于向芝, 贺晓, 张韬, 王炜. 内蒙古退化草原8种植物叶结构对禁牧的响应. 生态学报, 2007, 27(4): 1638-1645.

[25]裴浩, 敖艳红. 草原群落的镶嵌结构与群落演替阶段的相关分析. 中国草地, 1993, (4): 35—37

[27]刘钟龄, 王炜, 郝敦元, 梁存柱. 内蒙古草原退化与恢复演替机理的探讨. 干旱区资源与环境, 2002, 16(1): 84-91

猜你喜欢

样区禾草锦鸡儿
促进大果沙枣扦插育苗生长的最佳施肥措施
桂林市银杏绿化调查与分析
刈割留茬高度对大针茅草原生产力及可持续利用的影响
8种野生锦鸡儿在乌鲁木齐的引种试验
野生植物对陕北黄土丘陵区土壤石油污染影响研究
17种锦鸡儿属植物叶片解剖结构及抗旱性分析
桂北油茶早实丰产林营建现状调查
不同温度对变色锦鸡儿种子发芽特征的影响
半夏对不同禾草的化感效应
苜蓿与禾草混播