番茄抗性基因Ty—1的PCR快速检测
2014-08-20程斐等
程斐等
摘要:利用国内外已发表的10对标记引物对抗番茄黄化曲叶病毒病纯合系“JZ-108”(Ty-1/Ty-1)、感病纯合系“1712”(ty-1/ty-1)及杂交F1代的Ty-1抗性基因进行PCR扩增筛选,筛选出一对特异性引物SSR47,在抗病纯合材料中产生750 bp的扩增片段,感病材料中产生640 bp的片段,抗病杂合材料中同时产生750 bp和640 bp的扩增片段,标记结果与田间鉴定完全一致,证明该标记能够区分抗病材料、感病材料及杂合抗病材料,是与抗番茄黄化曲叶病毒病基因Ty-1紧密连锁的共显性标记。利用该标记对“JZ-108×1712”F2代的48个单株进行检测,有8株为抗病纯合基因型,19株为感病纯合基因型,21株为抗病杂合基因型,其中抗病纯合株与抗病杂合株田间表现均为抗病。经反复验证,结果准确可靠,该标记可用于对番茄抗病基因Ty-1的快速筛选鉴定。
关键词:番茄黄化曲叶病;Ty-1;PCR
中图分类号:Q785 文献标识号:A 文章编号:1001-4942(2014)03-0005-05
AbstractThe resistant gene Ty-1 of homozygous resistant lines “JZ-108”(Ty-1/Ty-1), homozygous susceptible lines “1712” (ty-1/ty-1)and their F1 generation was amplified by PCR method using 10 pairs of marker primers published at home and abroad. The results showed that SSR47 was the specific primer which had a 750 bp amplification fragment in homozygous resistant lines, a 640 bp fragment in susceptible lines and both 750 bp and 640 bp fragments in heterozygous resistant lines. The detection results were completely consistent with those of field identification. So this co-dominant marker, tightly linked to Ty-1 gene, could distinguish homozygous and heterozygous resistant lines and susceptible lines. Forty-eight individuals from F2 generation of “JZ-108×1712” were detected. There were 8 homozygous resistant lines, 19 homozygous susceptible lines and 21 heterozygous resistant lines. Both homozygous and heterozygous resistant lines displayed resistance to tomato yellow leaf curl disease in the field. The replicated stable results proved that SSR47 could be used for rapid identification of Ty-1 resistant gene in tomato.
Key wordsTomato yellow leaf curl disease;Ty-1;PCR
番茄(Solanum lycopersicum)是中国种植面积最大的蔬菜作物之一,它品种多、产量高、营养丰富、用途广泛,深受消费者的喜爱。目前病毒病是番茄生产中最常见的病害之一,其分布极为广泛,危害严重,容易造成番茄品质下降、产量锐减。其中番茄黄化曲叶病毒病(Tomato Yellow Leaf Curl Virus Disease, TYLCVD)影响最为严重,已成为世界番茄生产的限制性因素[1],一旦发病很难被控制。
番茄黄化曲叶病毒病于20世纪30年代末在以色列首次被发现[2],是一类由烟粉虱(Bemisia tabaci)传播的双生病毒(Geminiviruses),为菜豆金色花叶病毒属(Begonurvints)[3]。目前,在美洲、欧洲、中东地区、亚洲等世界各地均有发生[3~5]。该病于1991年在我国广西南宁市郊首次发生,自2005年开始,在广东、广西、台湾、江苏、上海、浙江、北京、河南、河北、山东等地均有发生,呈现由南向北迅速蔓延的趋势[6~8],给当地的番茄生产造成极其严重的损失。番茄抗TYLCV育种始于20世纪70年代,目前已培育出了一些抗病品种。近年来,随着分子检测鉴定技术及其它相关研究的发展,番茄抗TYLCV育种研究在各个方面都有了新的进展[9]。目前番茄黄化曲叶病毒病的抗病基因有Ty-1、Ty-2、Ty-3、Ty-3a、Ty-4和Ty-5等。1994年Zainir等[10]用普通栽培番茄种(M82-12-8)与野生智利番茄(LA1969)杂交,利用RFLP标记对BC2S1、BC2S2群体进行鉴定,将第一个抗番茄黄化曲叶病的主效基因Ty-1定位在6号染色体的RFLP标记TG297 (4 cM)和TG97 (8.6 cM)之间,距离为 6~10 cM。
番茄黄化曲叶病毒病属检疫性病害,利用常规方法进行抗病育种有较大困难,分子标记结合常规方法能高效、准确地进行抗病材料的筛选与鉴定。本试验通过对国内外已发表的一些标记引物进行筛选,旨在得到可以快速简单准确的对抗病番茄材料进行检测的引物,从而加快分子辅助育种的进程。
1材料与方法
1.1试验材料
3讨论
番茄黄化曲叶病毒病(TYLCVD)的传毒介体烟粉虱的寄主广泛,毒源植物种类众多,使得TYLCV繁殖速度加快,加速了病害的暴发,在实际生产中很难控制。培育抗病品种是控制此病毒的主要有效手段。目前,抗病品种主要通过国外引进,但国外品种一般价格较高且栽培特性与我国栽培环境存在差异,所以迫切需要培育国内抗病新品种。分子标记辅助育种可以提高选择性状的效率,加快育种进程。简单重复序列(Simple Sequence Repeat, SSR)与基因呈共显性遗传,可鉴别杂合子和纯合子,操作简便,结果稳定可靠。
本试验筛选出一条与抗病基因Ty-1紧密连锁的SSR标记。利用筛选出的SSR标记引物SSR47对24份“JZ-108×1712”F1代单株材料进行检测,均为杂合抗病基因型;对48份“JZ-108×1712” F2代单株材料进行检测,21份材料表现为杂合抗病型,产生750、640 bp的扩增片段;19份材料表现为纯合感病基因型,产生640 bp的片段;8份材料表现为纯合抗病基因型,产生750 bp的片段。
国内外在抗番茄黄化曲叶病毒病育种方面取得了比较显著的成就,但目前的抗病品种大多只包含单个抗性基因。在病害大规模发生时,其抗性能力依然有限。因此,可以将多个抗性基因聚合到一个品种中以培育高抗性品种。有研究已证明通过聚合不同抗源的基因可以提高番茄对TYLCV的抗性[20]。付蓉蓉等[16]研究表明同时含有纯合Ty-1和Ty-3抗性基因的番茄材料有更高更稳定的抗性。余文贵等[21]认为将抗性基因累加到栽培品种是育种上培育持久抗性品种的有效手段之一。随着番茄黄化曲叶病毒病抗性基因Ty-1、Ty-2、Ty-3、Ty-4及Ty-5的定位及分子标记工作的进行[10~12,22,23],育种学家可以利用相关的分子标记更加准确快速地筛选抗源材料,并结合传统育种将这些抗性基因聚合到一个品种中,从而培育出具有更高、更广、更持久抗性的番茄新品种。
参考文献:
[1]余文贵, 赵统敏, 杨玛丽,等. 番茄黄化曲叶病及其抗病育种研究进展[J]. 江苏农业学报, 2009,25(4):925-930.
[2]Pico B, Diezm J, Nuez F. Viral diseases causing the greatest economic losses to the tomato cropⅡ.The tomato yellow leaf curl virus: a review [J]. Sci. Hortic., 1996, 67(3/4): 151-196.
[3]Polston J E, Rosebrock T R, Sherwood T, et al. Appearance of Tomato yellow leaf curl virus in North Carolina[J].Plant Disease,2002,86(1):73.
[4]Accotto G P, Bragaloni M, Luison D, et al. First report of Tomato yellow leaf curl virus(TYLCV)in Italy[J].Plant Pathology,2003,52(6):799.
[5]Ueda S, Takeuchi S, Okayashi M, et al. Evidence of a new Tomato yellow leaf curl virus in Japan and its detection using PCR[J].Journal of General Plant Pathology,2005,71(4):319-325.
[6]周雪平, 崔晓峰, 陶小容. 双生病毒——一类值得重视的植物病毒[J]. 植物病理报, 2003, 33(6): 487-492.
[7]赵统敏, 余文贵, 周益军, 等. 江苏省番茄黄化曲叶病毒病(TYLCV)的发生与诊断初报[J]. 江苏农业学报, 2007,23(6): 654-655.
[8]何自福, 虞皓, 毛明杰, 等. 中国台湾番茄曲叶病毒侵染引起广东番茄黄化曲叶病[J]. 农业生物技术学报, 2007, 15(1): 119-123.
[9]褚云霞, 朱为民. 番茄抗黄化曲叶病毒育种研究进展[J]. 基因组学与应用生物学, 2009,28(3): 563-568.
[10]Zamir D, Eksteinmicheison Ⅰ, Zakay Y, et al. Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, Ty-1[J]. Theor. Appl. Genet., 1994, 88(2): 141-146.
[11]Castro A P D, Blanca J M, Diez M J. Identification of a CAPS marker tightly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato[J]. Eur. J. Plant Pathol., 2007, 117: 347-356.
[12]Ji Y, Schuster D J, Scott J W. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato[J]. Mol. Breeding, 2007,20(3): 271-284
[13]Ji Y F, Scott J W, Schuster D J, et al.Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus onchromosome 3 of tomato[J]. Journal of the American Society for Horticultural Science, 2009,134(2): 281-288.
[14]Garcia B E, Martin C T, Maxwell D P. Detection methods for the Ty-1 gene for resistance to begomoviruses on chromosome 6 of tomato[EB/OL]. 2007. http://www.plantpath.wisc.edu/GeminivirusResistantTomatoes/Markers/MAS-Protocols/IntroTy1.pdf.
[15]于力, 朱龙英, 万延慧, 等. 多重PCR技术鉴定番茄Ty-1和Mi基因[J]. 分子植物育种, 2008(1): 165-169.
[16]付蓉蓉, 刘杨, 陈火英. 番茄黄化曲叶病的Ty-1和Ty-3抗性基因的PCR鉴定[J]. 分子植物育种, 2011(9): 1647-1652.
[17]韩璀璇, 宋建军, 王琳珊,等. 番茄黄化卷叶病毒病抗病基因Ty-1的CAPS标记建立[J]. 中国农学通报,2012, 28(1):195-200.
[18]Maxwell D P, Martn C, Salusm S, et al. Breeding tomatoes for resistance to tomato-infecting begomoviruses [M]. Madison: University of Wisconsin-Madison, 2006.
[19]Williamson V M, Ho J Y, Wu F F, et al. A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato[J]. Theor. Appl. Genet.,1999,87:757-763.
[20]Vidavski F, Czosnek H, Gazit S, et al. Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species[J].Plant Breeding, 2008, 127(6):1-7.
[21]余文贵, 赵统敏, 杨玛丽, 等. 番茄黄化曲叶病及其抗病育种研究进展[J]. 江苏农业学报,2009,25(4): 925-930.
[22]Anbinder I, Reuveni M, Azari R,et al. Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum[J]. Theor. Appl. Genet., 2009, 119(3): 519-530.
[23]Hanson P M, Green S K, Kuo G. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato[J]. Tomato Genetic Cooperative Report, 2006, 56: 17-18.
[13]Ji Y F, Scott J W, Schuster D J, et al.Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus onchromosome 3 of tomato[J]. Journal of the American Society for Horticultural Science, 2009,134(2): 281-288.
[14]Garcia B E, Martin C T, Maxwell D P. Detection methods for the Ty-1 gene for resistance to begomoviruses on chromosome 6 of tomato[EB/OL]. 2007. http://www.plantpath.wisc.edu/GeminivirusResistantTomatoes/Markers/MAS-Protocols/IntroTy1.pdf.
[15]于力, 朱龙英, 万延慧, 等. 多重PCR技术鉴定番茄Ty-1和Mi基因[J]. 分子植物育种, 2008(1): 165-169.
[16]付蓉蓉, 刘杨, 陈火英. 番茄黄化曲叶病的Ty-1和Ty-3抗性基因的PCR鉴定[J]. 分子植物育种, 2011(9): 1647-1652.
[17]韩璀璇, 宋建军, 王琳珊,等. 番茄黄化卷叶病毒病抗病基因Ty-1的CAPS标记建立[J]. 中国农学通报,2012, 28(1):195-200.
[18]Maxwell D P, Martn C, Salusm S, et al. Breeding tomatoes for resistance to tomato-infecting begomoviruses [M]. Madison: University of Wisconsin-Madison, 2006.
[19]Williamson V M, Ho J Y, Wu F F, et al. A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato[J]. Theor. Appl. Genet.,1999,87:757-763.
[20]Vidavski F, Czosnek H, Gazit S, et al. Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species[J].Plant Breeding, 2008, 127(6):1-7.
[21]余文贵, 赵统敏, 杨玛丽, 等. 番茄黄化曲叶病及其抗病育种研究进展[J]. 江苏农业学报,2009,25(4): 925-930.
[22]Anbinder I, Reuveni M, Azari R,et al. Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum[J]. Theor. Appl. Genet., 2009, 119(3): 519-530.
[23]Hanson P M, Green S K, Kuo G. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato[J]. Tomato Genetic Cooperative Report, 2006, 56: 17-18.
[13]Ji Y F, Scott J W, Schuster D J, et al.Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus onchromosome 3 of tomato[J]. Journal of the American Society for Horticultural Science, 2009,134(2): 281-288.
[14]Garcia B E, Martin C T, Maxwell D P. Detection methods for the Ty-1 gene for resistance to begomoviruses on chromosome 6 of tomato[EB/OL]. 2007. http://www.plantpath.wisc.edu/GeminivirusResistantTomatoes/Markers/MAS-Protocols/IntroTy1.pdf.
[15]于力, 朱龙英, 万延慧, 等. 多重PCR技术鉴定番茄Ty-1和Mi基因[J]. 分子植物育种, 2008(1): 165-169.
[16]付蓉蓉, 刘杨, 陈火英. 番茄黄化曲叶病的Ty-1和Ty-3抗性基因的PCR鉴定[J]. 分子植物育种, 2011(9): 1647-1652.
[17]韩璀璇, 宋建军, 王琳珊,等. 番茄黄化卷叶病毒病抗病基因Ty-1的CAPS标记建立[J]. 中国农学通报,2012, 28(1):195-200.
[18]Maxwell D P, Martn C, Salusm S, et al. Breeding tomatoes for resistance to tomato-infecting begomoviruses [M]. Madison: University of Wisconsin-Madison, 2006.
[19]Williamson V M, Ho J Y, Wu F F, et al. A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato[J]. Theor. Appl. Genet.,1999,87:757-763.
[20]Vidavski F, Czosnek H, Gazit S, et al. Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species[J].Plant Breeding, 2008, 127(6):1-7.
[21]余文贵, 赵统敏, 杨玛丽, 等. 番茄黄化曲叶病及其抗病育种研究进展[J]. 江苏农业学报,2009,25(4): 925-930.
[22]Anbinder I, Reuveni M, Azari R,et al. Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum[J]. Theor. Appl. Genet., 2009, 119(3): 519-530.
[23]Hanson P M, Green S K, Kuo G. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato[J]. Tomato Genetic Cooperative Report, 2006, 56: 17-18.