APP下载

近海双壳类筏式养殖对大型底栖动物群落影响综述

2014-08-15韩庆喜刘东艳

海洋通报 2014年3期
关键词:双壳养殖区贝类

韩庆喜,刘东艳

(中国科学院海岸带环境过程与生态修复重点实验室(烟台海岸带研究所)山东省海岸带环境过程重点实验室中国科学院烟台海岸带研究所,山东 烟台 264003)

中国作为全球最大的海水养殖国家,早在2008年海水养殖即占据62.3%的全球总产量和51.4%的总产值,海水养殖产量在1970年至2008年间的年均增长率达到了10.4% (FAO,2010),海水养殖产量占世界海水养殖总产量的80%(国家海洋局海洋发展战略研究所课题组,2013),其中,2012年的海水养殖产量为1 643.81万吨,总产值为2 264.54亿元,超过国民生产总值的10%(国家海洋局海洋发展战略研究所课题组,2013)。贝类养殖作为我国海水养殖业的重要组成部分,2012年年产量约1 208多万吨,超过海水养殖总产量的73.5%(农业部渔业司,2013)。贝类养殖主要有三种形式,即潮间带和潮下带的底播养殖、潮间带插桩养殖和浅海筏式养殖(杨红生等,1998)。在海水养殖中,双壳类浅海筏式养殖的产量(包括扇贝、牡蛎和贻贝)达613万吨,占贝类养殖的50.7% (农业部渔业司,2013)。国内筏式养殖的种类主要包括扇贝,贻贝和牡蛎,贻贝作为我国较早养殖的贝类品种之一,其养殖面积曾一度占据了浅海养殖的主导地位,随着20世纪90年代以栉孔扇贝为代表的贝类养殖的兴起,才逐渐衰落并由扇贝取代了其优势地位(任宗伟,2003)。

双壳类的浅海筏式养殖无需任何额外饵料即能获得较好的生长效果和收益,因而很受欢迎(杨红生 等 , 1998; da Costa et al, 2006; Gibbs,2007;Fabietal,2009)。然而,长时间大规模养殖双壳类,不仅有可能引起其遗传品质的下降,也可能对海岸带水域的生态系统健康带来不良影响,因此,越来越多的研究关注到双壳类养殖引起的生态和环境效应(Borja etal,2009;Cranford etal,2009;Fabietal,2009)。例如:尽管国外的水产养殖的规模和强度远逊于中国,但欧盟已经启动多个计划,如ECASA计划(Ecosystem Approach for Sustainable Aquaculture)和 WFD(European Water Framework Directive)计划 (Devlin et al, 2007),致力于保护和改善水环境及生态环境的状况,为科学的发展和应用起到了良好的引导作用。

已有的研究结果显示,双壳类筏式养殖会对海洋浮游动植物、海水中悬浮物含量、海底有机质含量、水文、营养盐循环等产生影响。浅海筏式养殖中的双壳类作为滤食动物,能够滤食水体中绝大多数的小有机颗粒物(Dame,1993;杨红生等,1998)、浮游植物 (Lam-Hoaietal, 1997; Lam-Hoaiand Rougier,2001;王俊等,2001)、典型的浮游动物和鱼类的浮游阶段幼体 (Gibbs,2004),甚至更大的底栖和浮游生物(Davenportet al,2000;Lehane etal,2002)。贝类滤食的这些有机碎屑与生物中,相当一部分会通过粪便或假粪的形式排出,并通过生物沉降作用沉淀到海底底质中 (Gilbert et al, 1997; da Costa et al, 2006),将海洋中的营养物质富集到局部养殖海区,造成有机质在底质表面的大量聚集(郑向荣等,2008;Mirtoetal,2000),从而导致贝类养殖系统的自身污染,并可能改变海洋底部环境状态,进而影响底栖环境质量。

养殖的双壳类也会影响养殖系统中营养盐的循环。一方面,滤食性双壳类可向水体中直接排泄无机营养盐(如氨等),另外它排放于海底的粪和假粪,在微生物的作用下经矿化作用和再悬浮作用,又可重新进人水体进行物质循环(杨卫华等,2007),在合适的氧化还原条件下,贻贝养殖区的氨氮释放速率能达到非养殖区的5~10倍(Prins et al,1994),磷酸盐的释放速率也明显较高(Strang,2003)。另一方面,可通过滤食水体中的营养颗粒物,将其包装成粪便和假粪,可有效降低水体中的氮等营养物质的浓度(Lindahl et al,2005;张继红,2008)。

除养殖贝类以外,养殖设施(如绳子、浮标、网箱、架子、网袋等)会直接影响所在海域的水文,降低当地海域的海流状况,加剧有机物的富集和溶氧降低。筏式养殖的筏架和吊绳通过阻挡海流或潮汐而降低流速36%~63%(Plew etal,2005)。

大型底栖生物作为海岸带生态系统的重要组成部分,在碎屑的分解、物质循环和能量流动中扮演着重要角色(沈国英等,2002)。底栖生物具有相对稳定的生活环境和较差的运动性,因而对海底环境的扰动敏感而深刻,是监测海岸带环境的良好的指 示 生 物 (Elias et al, 1994; Gesteira et al,2003),是研究环境压力对生态系统综合影响的最佳选择 (Lim et al,1994;Nipper,2000; Shin et al,2004),在水环境质量的检测和评价的应用中,取得了一系列具有借鉴意义的成果(孙刚 等,2013)。

海洋污染的生物评估最先是从小头虫的污染指示(Warwick,1986)开始的,后来底栖群落的生态指数(包括香农指数、丰富度指数、均匀度指数等)在污染评价中获得广泛应用(Warwick etal,1987; 蔡立哲, 2003)。以 Caswell(1978)的中度干扰模型和Pearson等(1978)的有机质富集模型为基础,利用底栖生物的各种类群或特定类群对环境压力的不同响应,并将生态指数整合进来,发展了多种生物指数,使得底栖生物对环境变化评价的准确性达到了新的高度,从而使得底栖生物在环境评价中获得了更广泛的应用(Borja et al,2000; Simboura et al, 2002; Rosenberg et al,2004; Dauvin et al,2007; Muxika et al, 2007;Borjaetal, 2009; Weise etal, 2009)。

1 双壳类筏式养殖对于大型底栖动物的影响

1.1 双壳类筏式养殖对大型底上群落的影响

双壳类养殖通过养殖筏架、养殖生物本身、养殖排泄物等对周围生态环境产生影响,进而对较大型的和运动能力较高的底上动物(如大型无脊椎动物和鱼类)产生直接或间接影响。

(1)双壳类养殖筏架可起到人工鱼礁相似的作用,它的立体结构(如绳索,锚,浮标,网笼或网袋)改变了周围的环境,为海洋生物提供了复杂的三维生境,为众多生物提供了栖息场所和庇护场所(Costa-Pierce etal,2002;McKindsey etal, 2006;Powers etal,2007),增加了鱼类和大型无脊椎动物的生产力,起到了如海草床等自然界复杂生境相似的作用(Clynick etal,2008)。天然的复杂生境,如海草床、红树林等,由于提供了植被等初级生产者,使得进入食物网的食物来源增加(Lubbers et al,1990);这些人工鱼礁等复杂生境亦为鱼类和其它无脊椎动物提供庇护场所,以逃避捕食的危险并最终促进了这些动物生产力的提高(Carss,1990;Irlandi et al,1995;Dempster et al,2002;Boyra etal,2004;Brickhill et al,2005)。但也有研究显示(Clynick etal,2008)桁杆拖网采得的大型底上动物,在养殖区与非养殖区的并无明显差别,但这可能是由于很多大型鱼类靠近养殖装置生活,桁式拖网很难采集得到(D’Amours et al,2008),因为SCUBA潜水采样和观察的结果显示贻贝养殖对这些底上生物的影响非常显著,养殖区的生物丰度明显要高于养殖区外围(D’Amourset al,2008)。

养殖设施的存在,保护底上动物免受渔业捕捞等强烈扰动的影响。软泥质群落盛产甲壳动物、鲆鲽等底层鱼类,因而底层拖网是目前中国附近海域软底质群落扰动主要来源,高强度的渔业拖网严重改变了底栖动物群落结构(Jennings etal,2001),过度捕捞使得扰动敏感种消失,而杂食性的机会性物种依靠改变食物来源,如食用丢弃或拖网杀死的有机体而存活(Bergmann etal,2002)。渔业养殖本身的养殖设施,杜绝了渔业拖网等对大型底栖动物的影响,保护了对拖网敏感的大型底栖动物种类,对于保护大型底栖动物的物种多样性和物种丰富度都具有一定的积极作用(韩庆喜等,2011)。

除养殖筏架外,养殖过程中产生的死壳也会对某些生物的生存起到庇护作用,如牡蛎的死壳即能为鲇鱼或鰕虎鱼提供避难区或筑巢区(Breitburg,1999)。

(2)养殖筏架及养殖双壳类增加了大型无脊椎动物和底层鱼类可利用的饵料数量。第一,双壳类能够提供新的或增加的饵料,尤其是它们从养殖筏架上脱落至海底,Magdalen Islands岛的贻贝养殖区,每天脱落的活贻贝达 130 g/m2(Leonard,2004),从而导致养殖区捕食性种类(石蟹、龙虾及海星)生物量显著增加 (McKindsey et al,2006);第二,污损生物在掉落双壳类上的生长,同时增加了饵料的丰度和多样性(D’Amours et al,2008),这些养殖设施被污损生物附着之后,能为底上捕食者提供更多的猎食机会。筏式贝类养殖设施上能附着大量污损生物,不仅种类繁多,而且生物量也很大。在牡蛎养殖筏架上出现了45种附着的多毛类和软体动物 (O'Beirn etal,2004),贻贝养殖设施仅一个养殖袋上的附着生物干重就达20 g(Leblanc etal,2003),污损生物的生物量有时能达到养殖筏架总生物量的75%以上(Stenton-Dozey etal,1999),这些大量的附着生物为鱼类和大型无脊椎动物提供了食物和饵料来源,促进它们在养殖区或养殖设施附近的聚集(Carbines,1993; Brooks, 2000; Brehmer etal, 2003)。第三,生物沉积能够提高沉积食性的多毛类的生物量(Stehlik and Meise 2000; Mattsson and Lindén,1983),同样提供更多的饵料生物,促进底栖鱼类的生物量和产量。第四,由养殖贝类产生的大量有机质生物沉降,也为海参等沉积食性的动物提供了更加充足的营养和食物(Kang etal,2003;袁秀堂等,2008)。

鱼类和大型无脊椎动物会被养殖设施提供的饵料吸引(Morrisey etal,2006),从而影响周围地区鱼类和无脊椎动物的时空分布和食物组成(Inglis etal,2003; D’Amours etal, 2008)。尤其是海盘车Asterias sp.和黄道蟹Cancer irroratus丰度的增加(D’Amoursetal,2008)。群落贻贝养殖区与养殖区外围明显不同,群落在外围明显较养殖区及附近(<50m),研究结果表明贻贝养殖对于大型无脊椎动物和底栖鱼类(包括一些重要的生态和经济种)具有积极的正面影响(D’Amourset al,2008)。例如,作为捕食者的海盘车,养殖区内的平均密度是非养殖区的39倍,海盘车在养殖区高度密集,彼此之间的距离约为2m,而非养殖区的海星相当分散,每个海盘车占据了180m2的海底面积 (Inglisetal,2003)。

1.2 双壳类筏式养殖对大型底内群落的影响

双壳类养殖通过改变海洋底部环境状态,进而影响底栖群落的结构和组成。各种双壳类筏式养殖均能增强养殖海域附近区域有机质的生物沉降速率(Dahlbäck etal,1981;Hatcher etal,1994;Grant etal,1995)。这些有机质在海底底质中的大量聚集,会引起底栖群落的演替,使得底栖种类的丰富度、多样性等发生改变(Pearson etal,1978),底质变动也会改变群落摄食功能群的变化,并最终导致底栖群落整体的群落组成和结构发生变化,如不稳定的底质和水体扰动将会对悬浮物摄食者不利,滤食者将会对底质进行改造,而管栖的多毛类将会稳定底质,并为其它生物提供一个庇护所(Ong and Krishnan,1995)。密集的双壳类养殖能够在养殖区下方的海底产生大量的有机质积累(Mirto etal, 2000; Grantetal, 2012),并造成溶氧的降低 (Kaiser,2000),并且经由粪和假粪的生物沉降会对底栖群落产生不良的影响(Gilbertetal,1997; da Costaetal,2006;Fabietal,2009)。

按照 Caswell(1978)的中度干扰模型和Pearson等(1978)的有机质富集模型,有机质的富集程度的不同会对底栖群落产生完全不同的影响,低水平的有机质富集扰动将会提高有机体的生长速率,某些竞争能力强的物种将会在底栖群落中占据优势地位,使得群落的多样性降低;中等程度的干扰情况下,没有物种能够占据优势地位,从而使得群落的多样性较高,而随着扰动程度的进一步增加,过量的生物沉降会在缺乏扩散的条件下造成底质环境的缺氧以及硫化物的聚集,从而强烈改变大型底栖群落结构 (Duboisetal,2007),造成多毛类的聚集,并对养殖区底栖群落组成和营养结构产生深刻影响 (Dubois et al, 2007; Cranford et al,2009),使其丰度和物种多样性减少,群落多样性和丰富度降低,仅余少量的有机质耐受种(Smith etal,2004; da Costa etal,2006),从而机会性的食碎屑底内动物将会在海底的底内生物群落中占据优势地位 (Smaal,1991;Stenton-dozey et al,1999;Fabietal,2009),使得养殖区种类将以有机质污染的指示种或初级演替的先锋种为主(Smaal, 1991; Fabi et al, 2009),最极端的情形,海底将变成无生命区(Grall et al,1997;Callier etal,2008),但此极端情况多发生于投饵强度较大的鱼类的网箱养殖之中,大量的有机质富集由于饵料的不充分利用,而引起的网箱底部富集(高爱根等,2005;杨俊毅等,2007;黄洪辉等,2005;许巧情等,2009),而双壳类养殖对则没有类似的报道。

受多种环境因素和养殖技术因素综合和交叉影响,贝类筏式养殖也可能对底栖环境和生物无负面影响 (da Costa etal,2006; Fabi, 2009)或具有相当有限的影响 (Chamberlain et al, 2001;Crawford etal,2003)。通过这些研究证实,贝类养殖对底栖环境的影响远较鲑鱼养殖为小,甚至不必对贝类养殖造成的环境影响进行检测(Crawford etal,2003),对底栖生物的影响也基本可以忽略(Han etal,2013);水产养殖活动仅对养殖区下的大型底栖生物存在影响,而对养殖区周围一定范围内的底栖生物则只具有有限的影响(Fabi et al,2009);甚至在某些贻贝筏式养殖区中,大型底栖生物多样性明显高于对照区的多样性,但在个体丰度水平上,对照区较之养殖区更高,得出筏式养殖对底栖环境无负面影响(da Costa etal,2006)。上述研究结论的得出,应该与当地有限的养殖规模和养殖强度、以及较强的海流水文条件密切相关,因为站位、水深、养殖产量、海流速度等都会影响有机质的富集,养殖规模和养殖强度直接影响有机质的富集量,在较高的养殖密度之下,海流则与有机污染的运输息息相关(Borja et al,2009;Han et al,2013),与有机质沉降速率呈负相关(Hartstein etal,2005),亦即海流的强度与海水养殖带来的影 响 呈 负 相 关 (Borja et al, 2009; Han et al,2013)。在较高的海流或潮流(平均流速为10 cm/s以上,最大流速超过30 cm/s)海域(da Costa and Nalesso,2006;Cranford et al,2009; Fabiet al,2009; Han et al, 2013)海 域 或 开 阔 海 域(Crawford etal,2003),水交换能力较大,有机物沉降并未给底质带来明显变化或影响(Anderson et al,2003),该区域的有机质含量维持在一个较低的水平,而总有机质(TOC)对大型底栖生物产生毒害的阈值为35mg/g(Hyland etal,2005;Han etal, 2013),按照 Pearson等 (1978)的有机质富集模型中,在阈值之上物种丰富度和多样性会随着有机质聚集的增加而降低,而在10mg/g的有机质含量浓度之下,底栖群落不表现明显改变(Hyland etal, 2005; Han etal, 2013)。

尽管双壳类筏式养殖能明显增加有机质的生物沉降,养殖区的生物沉降速率可达到非养殖区域的1~2.46 倍 (Graf et al,1997;Zhou et al,2006;Han etal,2013),由高密度养殖带来的有机质,应该足以对养殖区域的大型底栖动物产生不良影响。但这类情形仅发生于较低的海流强度之下,在双壳类养殖对大型底栖群落产生明显不良影响的养殖海域,海域的平均流速仅为3.16~10.21 cm/s(Hartstein etal,2004)或 5 cm/s (Callier etal,2008)。鉴于较高的海流是控制有机质生物沉降的关键因素,在较高海流或潮汐流的海域进行双壳类养殖活动,在双壳类养殖的选址上,能将双壳类养殖带给大型底栖群落的影响降至最低(Han etal,2013)。

2 未来展望

对于双壳类养殖来说,它带给生态系统的影响不仅仅包含大型底栖生物,也包括中小型底栖生物,浮游动物,浮游植物,以及对环境条件包括水文、光照、透明度、营养盐、颗粒搬运等各个因素的影响,对这些方面的综合研究,可以为正确评估、评价贝类养殖活动对生态环境的影响或压力提供科学依据,正确的养殖选址结合科学的生态容量评估,是保证双壳类浅海筏式养殖健康可持续发展的重要先决条件。除此之外,多营养层次的综合养殖(张继红等,2009)也是未来集约化养殖的一个发展趋势。不同食性养殖对象的混养(例如投饵类的鱼类和虾类、滤食性的贝类、植食性的海蜇类、沉积食性的海参以及大型藻类等),减轻养殖带来的生态压力,提高生态和经济效益,保证海水养殖的可持续发展(董贯仓等,2007;袁秀堂等,2008)。在混养模式下,饵料甚至养殖生物排泄物都能得到充分利用,可将营养损耗及潜在的经济损耗降低到最低,从而使系统具有较高的容纳量和经济产出,从而有效降低养殖活动对海域环境及底栖生物的压力(张继红等,2009)。

Anderson M R,Stirling C,Roy A,et al,2003.Assessing potential for habitat modification under longline mussel farms using multibeam acoustic surveys.In Reportofthe National Science Workshop,Edited by Stirling C H,2003.Fisheries and Oceans Canada,St.John's,Newfoundland,Canadian Technical Reportof Fisheries and Aquatic Sciences,2530:1-58.

Bergmann M,Wieczorek S K,Moore P G,etal,2002.Discard composition of the Nephrops fishery in the Clyde Sea area,Scotland.Fisheries Research,57:169-183.

Borja á,Franco J,Pérez V,2000.A Marine Biotic Index to Establish the Ecological Quality of Soft-Bottom Benthos within European Estuarine and Coastal Environments.Marine Pollution Bulletin,40(12):1100-1114.

Borja á,Rodrígez J G,Black K,etal,2009.Assessing the suitability of a range ofbenthic indices in the evaluation ofenvironmentalimpactof fin and shellfish aquaculture located in sites across Europe.Aquaculture,293(3-4):231-240.

Boyra A,Sanchez-Jerez P,Tuya F,et al,2004.Attraction ofwild coastal fishes to an Atlantic subtropical cage fish farms,Gran Canaria,Canary Islands.Environmental Biology of Fishes,70:393-401.

Brehmer P,Gerlotto F,Guillard J,et al,2003.New applications of hydroacoustic methods for monitoring shallow water aquatic ecosystems:the case ofmusselculture grounds.Aquatic Living Resources,16:333-338.

Brickhill M J,Lee S Y,Connolly R M,2005.Fishes associated with artificialreefs:attributing changes to attraction or production using novel approaches.JournalofFish Biology,67:53-71.

Brooks K M,2000.Literature review and modelevaluation describing theenvironmental effects and carrying capacity associated with the intensive culture ofmussels(Mytilus edulis galloprovincialis).Taylor Resources.Environmentalimpactstatement,technicalappendix,1-128.

Callier M D,McKindsey C W,Desrosiers G,2008.Evaluation of indicators used to detect mussel farm influence on the benthos:Two case studies in the Magdalen Islands,Eastern Canada.Aquaculture,278:77-88.

Carbines G D,1993.The ecology and early life history of Notolabrus celidotus(Pisces:Labridae)around mussel farms in the Marlborough Sounds.Thesis(MSc),University ofCanterbury,Canterbury,1-134.

Carss D N,1990.Concentrations ofwild and escaped fishes immediately adjacentto fish farm cages.Aquaculture,90:29-40.

Caswell H,1978.A general formula for the sensitivity of population growth rate to changes in life history parameters.Theoretical Population Biology,14:215-230.

Chamberlain J,Fernandes T F,Read P,etal,2001.Impacts ofbiodeposits from suspended mussel(Mytilus edulis L.)culture on the surrounding surficialsediments.ICES JournalofMarine Science,58:411-416.

Clynick B G,McKindsey C W,Archambault P,2008.Distribution and productivity of fish and macroinvertebrates in mussel aquaculture sites in the Magdalen islands(Québec,Canada).Aquaculture,283:203-210.

Costa-Pierce B A,Bridger C J,2002.The role of marine aquaculture facilities as habitats and ecosystems.In:Stickney RR,McVey JP(eds)Responsible marine aquaculture.CABI Publishing,Wallingford,105-144.

Cranford P J,Hargrave B T,Doucette L I,2009.Benthic organic enrichmentfrom suspended mussel(Mytilus edulis)culture in Prince Edward Island,Canada.Aquaculture,292(3-4):189-196.

Crawford C M,Macleod C K A,Mitchell I M,2003.Effects of shellfish farming on the benthic environment.Aquaculture,224:117-140.

D'Amours O,Archambault P,McKindsey C W,et al,2008.Local enhancementofepibenthic macrofauna by aquaculture activities.Marine Ecology Progress Series,371:73-84.

da Costa K G,Nalesso R C,2006.Effects ofmusselfarming on macrobenthic community structure in Southeastern Brazil.Aquaculture,258(1-4):655-663.

Dahlbäck B,Gunnarsson L A H,1981.Sedimentation and sulfate reduction undera musselculture.Marine Biology,63:269-275.

Dame R F,1993.The role ofbivalve filter feeder materialfluxes in estuarine ecosystems.In:Dame,R.F.(ed.)Bivalve filter feeders in estuarine and coastal ecosystem processes,NATO,A.S.I.Series,Vol.G33.Springer-Verlag,Berlin,p.245-269.

Dauvin J C,RuelletT,2007.Polychaete/Amphipod ratio revisited.Marine Pollution Bulletin,55(1-6):215-224.

DavenportJ,Smith R J J W,Packer M,2000.Mussels Mytilus edulis:significant consumers and destroyers of mesozooplankton.Marine E-cology Progress Series,198:131-137.

Dempster T,Sanchez-Jerez P,Bayle-Sempere J T,etal,2002.Attraction of wild fish to sea-cage fish farms in the south-western Mediterranean Sea:spatial and short-term temporal variability.Marine E-cology Progress Series,242:237-252.

Devlin M,Best M,Haynes D,2007.Implementation ofthe Water Framework Directive in European marine waters.Marine Pollution Bulletin,55(1-6):1-2.

Dubois S,Marin-Léal,J C,Ropert M,etal,2007.Effects of oyster farming on macrofaunal assemblages associated with Lanice conchilega tubeworm populations:A trophic analysis using natural stable isotopes.Aquaculture,271(1-4):336-349.

Elias R,Bremec C S,1994.Biomonitoring of water quality using benthic communities in Blanca Bay(Argentina).Science of Total Environment,158:45-49.

Fabi G,Manoukian S,Spagnolo A,2009.Impact of an open-sea suspended musselculture on macrobenthic community(Western Adriatic Sea).Aquaculture,289(1-2):54-63.

FAO,2010.The state ofworld fisheries and aquaculture.Rome,1-197.

Gaudêncio M J,Cabral H N,2007.Trophic structure of macrobenthos in the Tagus estuary and adjacent coastal shelf.Hydrobiologia,587:241-251.

Gesteira J L G,Dauvin J C,Fraga,M S,2003.Taxonomic levelforassessing oil spill effects on soft-bottom sublittoral benthic communities.Marine Pollution Bulletin,46:562-572.

Gibbs M T,2004.Interactions between bivalve shellfish farms and fishery resources.Aquaculture,240:267-296.

Gibbs T M,2007.Sustainability performance indicators for suspended bivalve aquaculture activities.EcologicalIndicators,7:94-107.

GilbertF,Souchu P,BianchiM,etal,1997.Influence ofshellfish farming activities on nitrification,nitrate reduction to ammonium and denitrification at the water sediment interface of the Thau lagoon,France.Marine Ecology Progress Series,151:143-153.

Graf G,Rosenberg,R.1997.Bioresuspension and biodeposition:a review.JournalofMarine Systems,11:269-278.

Grall J,Glémarec M,1997.Using biotic indices to estimate macrobenthic community perturbations in the Bay of Brest.Estuarine,Coastaland ShelfScience,44(Supplement1):43-53.

Grant C,Archambault P,Olivier F,et al,2012.Influence of'bouchot'mussel culture on the benthic environment in a dynamic intertidal system.Aquaculture EnvironmentInteractions,2:117-131.

GrantJA,Hatcher D B,ScottP,etal,1995.A multidisciplinary approach to evaluating impacts ofshellfish aquaculture on benthic communities.Estuaries,18:124-144.

Han Q X,Wang Y Q,Zhang Y,et al,2013.Effects of intensive scallop mariculture on macrobenthic assemblages in Sishili Bay,the northern Yellow Sea ofChina.Hydrobiologia,718(1):1-15.

Hartstein N D,Rowden A A,2004.Effectofbiodeposits from musselculture on macroinvertebrate assemblages at site of different hydrodynamic regime.Marine EnvironmentalResearch,57:339-357.

Hartstein N D,Stevens C L,2005.Deposition beneath long-line mussel farms.AquaculturalEngineering,33:192-213.

Hatcher A,Grant J,Schofield B,1994.Effects of suspended mussel culture(Mytilus spp.)on sedimentation,benthic respiration and sediment nutrient dynamics in a coastal bay.Marine Ecology Progress Series,115:219-235.

Hyland J,Balthis L,Karakassis I,etal,2005.Organic carbon contents of sediments as an indicatorofstress in the marine benthos.Marine E-cology Progress Series,295:91-103.

Inglis G J,Gust N,2003.Potential indirecteffects of shellfish culture on the reproductive success ofthe benthic predators.Journalof Applied Ecology,40:1077-1089.

IrlandiE A,Ambrose Jr WG,Orlando,B A,1995.Landscape ecology and the marine environment:how spatial configuration of seagrasses influences growth and survivalofthe bay scallop.Oikos,72:307-313.

Jennings S,Pinnegar J K,Polunin N V C,etal,2001.Impacts oftrawling disturbance on the trophic structure of benthic invertebrate communities.Marine Ecology Progress Series,213:127-142.

Kaiser M J,2000.Ecologicaleffects ofshellfish cultivation.In:Black,K.D.(Ed.),Environmentalimpacts ofaquaculture.Sheffield Academic Press,Sheffield,UK,51-75.

Kang K H,Kwon J Y,Kim Y M,2003.A beneficial coculture:Charm ablone Haliotis discus hannai and sea cucumber Stichopus japonicus.Aquaculture,216:87-93.

Lam-Hoai T,Rougier C,2001.Zooplankton assemblages and biomass during a 4-period survey in a northern Mediterranean coastal lagoon.Water Research,35:271-283.

Lam-Hoai T,Rougier C,Lasserre G,1997.Tintinnids and rotifers in a northern Mediterranean coastal lagoon.Structural diversity and function through biomass estimations.Marine Ecology Progress Series,152:13-25.

LeBlanc A R,Landry T,Miron G,2003.Identification of fouling organisms covering mussel lines and impact of a common defouling method on the abundance offoulers in Tracadie Bay,Prince Edward Island.Canadian Technical Report of Fisheries and Aquatic Sciences 2477:vii+18 p.

Lehane C,Davenport J,2002.Ingestion of mesozooplankton by three species of bivalve;Mytilus edulis,Cerastoderma edule and Aequipecten opercularis.Journal of the Marine Biological Association ofthe UK,82:615-619.

Leonard,M.2004.Evaluation et caractérisation de la chute de moules dans la lagune de Havre-aux-Maisons aux Iles-de-la-Madeleine,Québec.Thesis(BSc),ENITA Clermont-Ferrand,1-63.

Lim H S,Hong J S,1994.An environmentalimpact assessmentbased on benthic macrofauna in Chinhae Bay,Korea.Bulletin of Korean Fisheries Society,27:659-674.

Lindahl O,HartR,Hernroth B,etal,2005.Improving marine water quality by musselfarming:a profitable solution for Swedish society.Ambio,34:131-138.

Lubbers L,Boynton WR,Kemp W M,1990.Variations in structure ofestuarine fish communities in relation to abundance ofsubmersed vascularplants.Marine Ecology Progress Series,65:1-14.

Mattsson J,Lindén O,1983.Benthic macrofauna succession under mussels,Mytilus edulis L.(Bivalvia),cultured on hanging long-lines.Sarsia,68:97-102.

McKindsey C W,Anderson M R,Barnes P,etal,2006.Effects ofshellfish aquaculture on fish habitat.Fisheries and Oceans Canada Science Advisory Secretariat Research Document 2006/011.www.dfo-mpo.gc.ca/csas/Csas/DocREC/2006/RES2006_011_e.pdf.

Mirto S,Rosa T L,Danovaro R,etal,2000.Microbialand Meiofaunal Response to Intensive Mussel-Farm Biodeposition in Coastal Sediments of the Western Mediterranean.Marine Pollution Bulletin,40(3):244-252.

Morrisey D J,Cole R G,Davey N K,etal,2006.Abundance and diversity of fish on mussel farms in New Zealand.Aquaculture,252:277-288.

Muxika I,Borjaá,Bald J,2007.Using historical data,expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status,according to the European Water Framework Directive.Marine Pollution Bulletin,55(1-6):16-29.

Nipper M,2000.Current approaches and future directions for contaminant-related impact assessments in coastalenvironments:Brazilian perspective.Aquatic Ecosystem Health and Management,3:433-447.

O'Beirn F X,Ross P G,Luckenbach M W,2004.Organisms associated with oysters cultured in floating systems in Virginia,USA.Journalof Shellfish Research,23:825-829.

Ong B,Krishnan S,1995.Changes in the macrobenthos community of a sand flat after erosion.Estuarine,Coastal and Shelf Science,40(1):21-33.

Pearson T H,Rosenberg R,1978.Macrobenthic succession in relation to organic enrichment and pollution of the marine environment.O-ceanographic Marine Biology AnnualReview,16:229-311.

Plew D R,Stevens C L,Spigel R H,et al,2005.Hydrodynamic implications oflarge offshore musselfarms.IEEE Journalof Oceanic Engineering,30:95-108.

Powers M J,Peterson C H,Summerson H C,et al,2007.Macroalgal growth on bivalve aquaculture netting enhances nursery habitat for mobile invertebrates and juvenile fishes.Marine Ecology Progress Series,339:109-122.

Prins T C,Smaal A C,1994.The role ofthe blue mussel Mytilus edulis in the cycling ofnutrients in the Oosterschelde Estuary(The Netherlands).Hydrobiologia,282/283:413-429.

Rosenberg R,Blomqvist M,Nilsson H C,et al,2004.Marine quality assessmentby use ofbenthic species-abundance distributions:a proposed new protocol within the European Water Framework Directive.Marine Pollution Bulletin,49:728-739.

Shin P K S,Huang Z G,Wu R S S,2004.An updated baseline of subtropicalmacrobenthic communities in Hong Kong.Marine Pollution Bulletin,49(1-2):128-135.

Simboura N,Zenetos A,2002.Benthic indicators to use in ecological quality classification of Mediterranean soft bottom marine ecosys-tems,including a new biotic index.Mediterranean Marine Science,3(2):77-111.

Smaal A C,1991.The ecology and cultivation ofmussels:new advances.Aquaculture,94:245-261.

Smith J,Shackley S E,2004.Effects of a commercial mussel Mytilus edulis lay on a sublittoral,softsedimentbenthic community.Marine Ecology Progress Series,282:185-191.

Stehlik L L,Meise C J,2000.Dietofwinter flounder in a New Jersey estuary:ontogenetic change and spatialvariation.Estuaries,23:381-391.

Stenton-dozey J M E,Jackson L F,Busby A J,1999.Impact of Mussel Culture on Macrobenthic Community Structure in Saldanha Bay,South Africa.Marine Pollution Bulletin,39(1-12):357-366.

Strang T J,2003.Nutrientregeneration under mussel farms:the environmental effects of mussel aquaculture in coastal bays.Thesis(MSc),memorialUniversity ofNewfoundland,St.John's,1-98.

Warwick R M,1986.A new method fordetecting pollution effects on marine macrobenthic communities.Marine Biology,92:557-562.

Warwick R M,Pearson T H,Ruswahyuni,1987.Detection ofpollution effects on marine macrobenthos:further evaluation of the species abundance/biomass method.Marine Biology,95(2):193-200.

Weise A M,Cromey C J,Callier M D,etal,2009.Shellfish-DEPOMOD:Modelling the biodeposition from suspended shellfish aquaculture and assessing benthic effects.Aquaculture,288(3-4):239-253.

Zhou Y,Yang H S,Zhang T,etal,2006.Influence offiltering and biodeposition by the cultured scallop Chlamys farrerion benthic-pelagic coupling in a eutrophic bay in China.Marine Ecology Progress Series,317:127-141.

蔡立哲,2003.大型底栖动物污染指数(MPI).环境科学学报,23(5):625-629.

董贯仓,田相利,董双林,等,2007.几种虾、贝、藻混养模式能量收支及转化效率的研究.中国海洋大学学报,37(6):899-906.

高爱根,陈全震,胡锡钢,等,2005.象山港网箱养鱼区大型底栖生物生态特征.海洋学报,27(04):108-113.

国家海洋局海洋发展战略研究所课题组,2013.中国海洋发展报告(2013).北京:海洋出版社,1-403.

韩庆喜,李宝泉,韩秋影,等,2011.渔业捕捞对威海港附近海域底上大型底栖群落结构影响的初步研究.海洋通报,30(2):121-126.

黄洪辉,林钦,林燕棠,等,2005.大亚湾网箱养殖海域大型底栖动物的时空变化.中国环境科学,25(4):412-416.

农业部渔业司,2013.2013中国渔业统计年鉴.北京:中国农业出版社,1-145.

任宗伟,2003.贻贝浅海筏式养殖方法.齐鲁渔业,20(3):3.

沈国英,施并章,2002.海洋生态学.2,editor.北京:科学出版社,1-446.

孙刚,房岩,2013.底栖动物的生物扰动效应.北京:科学出版社,1-222.

王俊,姜祖辉,董双林,2001.滤食性贝类对浮游植物群落增殖作用的研究.应用生态学报,12(5):765-768.

许巧情,过龙根,刘绍平,2009.网箱养殖对底栖动物丰度和生物量的影响.长江大学学报,6(3):35-38.

杨红生,周毅,1998.滤食性贝类养殖对海区环境影响的研究进展.海洋科学,22(2):42-44.

杨俊毅,高爱根,宁修仁,等,2007.乐清湾大型底栖生物群落特征及其对水产养殖的响应.生态学报,27(1):34-41.

杨卫华,高会旺,刘红英,等,2007.胶州湾扇贝养殖对海域环境影响的初步研究.海洋湖沼通报,2:86-93.

袁秀堂,杨红生,周毅,等,2008.刺参对浅海筏式贝类养殖系统的修复潜力.应用生态学报,19(4):866-872.

张继红,2008.滤食性贝类养殖活动对海域生态系统的影响及生态容量评估.中国科学院研究生院 (海洋研究所),博士毕业论文,1-171.

张继红,方建光,王巍,2009.浅海养殖滤食性贝类生态容量的研究进展.中国水产科学,16(4):626-632.

郑向荣,孙桂清,杨金晓,等,2008.昌黎县扇贝养殖区营养盐调查及水质评价.河北渔业,(2):43-45.

猜你喜欢

双壳养殖区贝类
我国海水贝类养殖低碳效应评价
广东省养殖水域滩涂规划
江苏近海紫菜养殖区的空间扩张模式研究
深部软岩巷道“双壳”支护技术研究与应用
QuEChERS-液相色谱-高分辨质谱法测定贝类中6种亲脂性贝类毒素
鲜美贝类可能暗藏毒素
认识麻痹性贝类毒素
30万吨级超大原油船双壳优化设计研究
6万吨级新型半敞口散货船的开发设计
养殖活动对超微型浮游生物分布影响的研究*