整体式桥台桥梁极限长度
2014-08-08BRISEGHELLABruno薛俊青兰成ZORDANTobia陈宝春
BRISEGHELLA+Bruno+薛俊青兰成+ZORDAN+Tobia+陈宝春
建筑科学与工程学报2014年文章编号:16732049(2014)01010407
收稿日期:20140123
基金项目:海外高层次人才引进计划(“千人计划”)项目(TM201227);福州大学人才引进科研启动基金项目(XRC1369)
作者简介:BRISEGHELLA Bruno(1971),男,意大利人,教授,博士研究生导师,工学博士
摘要:以目前世界上最长的整体式桥台桥梁Isola della Scala桥为实例建立有限元模型,通过实桥动力测试对模型进行校正;提出整体式桥台桥梁极限长度的简化计算公式,并通过有限元模型验证其精确性;利用该简化计算公式预测不同限制条件下整体式桥台桥梁的极限长度。结果表明:考虑桥墩的转动能力和桥台的承载能力时,极限长度可以达到540 m;考虑温度位移产生的疲劳影响时,极限长度可以达到450 m;考虑桥头搭板的耐久性时,极限长度可以达到430 m。
关键词:整体式桥台桥梁;极限长度;有限元模型;动力测试;温度荷载;土结构相互作用
中图分类号:U443文献标志码:A
Maximum Length of Integral Abutment BridgesBRISEGHELLA Bruno1, XUE Junqing1, LAN Cheng2, ZORDAN Tobia2, CHEN Baochun1
(1. School of Civil Engineering, Fuzhou University, Fuzhou 350108, Fujian, China;
2. Bolina Ingegneria s.r.l., Venice 30174, Veneto, Italy)Abstract: Taking “Isola della Scala” Bridge in Verona (Italy), the longest integral abutment bridge ever built, as case, an accurate finite element model was built. The finite element model was updated using the results of static and dynamic tests. Then, a simplified formula which can be used to predict the maximum length of integral abutment bridge was proposed, and the validity was verified by the finite element model. Finally, using the simplified formula, the maximum length of integral abutment bridge considering different limiting conditions was predicted. The results show that: when considering the pier rotation and abutment capacities, the maximum length can reach 540 m; when considering the fatigue effects due to thermalinduced displacement, the maximum length can reach 450 m; when considering the durability of approach slab, the maximum length can reach 430 m.
Key words: integral abutment bridge; maximum length; finite element model; dynamic test; thermal load; soilstructure interaction
0引言
随着中国经济的发展,社会对交通运输能力的要求不断提高,荷载等级、交通流量、行车速度等也必然提高,再加上中国超载车辆的问题长期没有得到解决,如何保证桥梁的安全、耐久、全寿命服务品质这些可持续发展问题,都是当前需要解决的重要问题。目前,中国拥有大量的有伸缩缝桥(有缝桥),有缝桥通过伸缩缝和支座来吸收温度升降所引起的主梁膨胀和收缩、混凝土收缩和徐变以及基础的不均匀沉降。随着桥龄增长,在气候、环境等自然因素的作用以及一些不可预测的自然破坏力作用下,绝大多数有缝桥在使用过程中均出现耐久性问题。
通过对大量桥梁使用情况的调查可以发现,伸缩缝和支座损坏最为常见且影响最大[12]。同时伸缩缝和支座损坏还会产生其他一系列桥梁病害,如伸缩缝损坏漏水造成主梁端部、台帽或墩帽混凝土和支座的腐蚀以及跳车、颠簸等不舒适的行车感受,甚至高速情况下造成事故。此外,由于伸缩缝和支座损坏所引起的频繁更换或维修会耗费大量的时间和费用,造成严重负面社会影响[3]。
1超长整体式桥台桥梁
为了从根本上解决桥梁伸缩缝和支座的耐久性和易损性问题,许多工程师提出了“没有伸缩缝就是最好的伸缩缝”概念[4]。对于多跨桥梁,采用连续梁、连续刚构等桥型,桥墩上的伸缩缝或支座就可以被取消。针对桥台处无缝化的做法主要有3种,包括全整体式桥台、半整体式桥台和延伸桥面板[1]。
整体式桥台桥梁(整体桥)最早于20世纪30年代出现在美国。然而整体桥在初期并没有得到很好的发展,主要是因为附加产生的温度影响、土结构的相互作用等问题没有得到很好解决。整体桥的上部结构、下部结构、台后填土及桩周土将一起承受荷载作用,特别是原先由伸缩缝和支座吸收的由于温度升降所引起的主梁膨胀和收缩将通过下部结构传递到台后填土和桩周土中[56]。随着国际上高速公路建造兴旺时期的到来,近几年整体桥发展迅速,目前已在美国、加拿大、意大利、英国、德国和日本等发达国家得到了大量的应用。然而,关于整体桥极限长度目前并没有一个统一的标准,不同地质情况、温度变化和施工经验,导致不同国家和地区对于整体桥总长度的限值也不尽相同,且主要依靠主梁的温度变形值和已建整体桥的经验数据来确定。目前,世界各国规范的建议值通常小于或等于100 m,因此整体桥的应用主要集中于中小跨径桥梁中。
部分学者针对整体桥极限长度开展了相应的研究,以期扩展整体桥的使用范围。有学者以总长度305,381,457 m的整体桥有限元模型为基础,开展了大量参数分析。结果表明,当整体桥总长度超过305 m时,桩、桥台桩连接处和主梁桥台背墙连接处的应力很高,因此这些参数可以被看作是限制整体桥长度的主要因素。较高的桥台、适中的桥台背墙施工节点刚度、较低的土壤刚度和桩绕强轴弯曲可以降低整体桥的应力和位移,有利于增加整体桥的总长度,最后提出整体桥的极限长度可以达到457 m[7]。瑞士洛桑联邦理工大学的学者也开展了相应的研究,并认为将瑞士联邦公路署对整体桥的总长度限制从60 m提高到数百米是可能的[8]。还有学者根据美国AASHTO规范,预测了位于中等密度粘土且采用H型钢桩的整体桥极限长度。采用不同H型钢桩,位于寒带的混凝土整体桥极限长度从150 m变化到265 m,而钢整体桥极限长度从80 m变化到145 m;位于温带的混凝土整体桥极限长度从180 m变化到320 m,而钢整体桥极限长度从125 m变化到220 m[910]。
endprint
本文中将总长度超过200 m的整体桥称为超长整体桥。通过对多篇文献[11]~[16]的总结和归纳,得到世界上已建设超长整体桥的国家以及对应的极限长度,见表1。从表1可以看出,将整体桥的概念应用于总长度超长的桥梁中是可行的。
表1超长整体桥的极限长度
Tab.1Maximum Lengths of Superlong
Integral Abutment Bridges地区极限长度/m意大利维罗纳400.8美国田纳西358.4美国科罗拉多339.2美国俄勒冈335.5美国路易斯安那304.8美国印第安纳302.0美国维吉尼亚235.5美国南达科他213.4以目前世界上总长度最长的整体桥,位于意大利维罗纳的Isola della Scala桥为实例,建立有限元模型,并通过实桥动力测试结果校正模型。提出整体桥极限长度的简化计算公式,通过有限元模型验证其精确性。最后利用该简化公式,估算在不同限制条件下整体桥的极限长度。2实例分析
2.1Isola della Scala桥
意大利的Isola della Scala桥共13跨,跨度为29.9 m+11×31 m+29.9 m,总长为400.8 m。该桥主要参数见表 2,其立面见图 1。该桥通过在相邻跨的主梁之间和主梁与桥台背墙之间现浇混凝土,从而取消伸缩缝。下部结构与上部结构之间通过钢棒连接,其节点刚度介于铰接和刚接之间。该桥从2007年建成通车直到现在,并没有发现任何问题,只在桥台搭板处出现了一些尚在容许范围内的裂缝[5]。
表2Isola della Scala桥主要参数
Tab.2Main Parameters of Isola della Scala Bridge结构参数参数值桥面系宽度/m13.5桥面系高度/m1.50+0.30墩横截面直径/m3墩帽高度/m1.80墩身高度/m3.775~5.385桩帽高度/m2.50桩基础类型钢筋混凝土摩擦桩桩横截面直径/m1.2桩长/m15~20桩数每个桥墩或桥台6根图1Isola della Scala桥立面(单位:m)
Fig.1Elevation Layout of Isola della
Scala Bridge (Unit:m)2.2有限元模型
本文以Isola della Scala桥为背景工程,采用ANSYS有限元软件建立二维有限元模型,见图2。主梁、桥墩、桥台和桩基础均采用梁单元进行模拟。对于主梁与桥台之间的连接,采用共用节点模拟刚性连接;而对于主梁与桥墩的连接,则采用转动弹簧单元模拟铰接。对于结构的塑性铰,模型采用转动弹簧进行模拟,塑性铰布置在主梁和桥台连接处及桩的顶部和桥墩底部。
图2Isola della Scala桥有限元模型
Fig.2Finite Element Model of Isola della Scala Bridge与传统的有缝桥梁不同,整体桥取消了伸缩缝和支座,因此有限元模拟必须考虑结构与土的相互作用,本文中采用纵向弹簧单元进行模拟。对于桥台土相互作用的模拟,模型选用美国桥梁基础设计手册NCHRP343[17]中建议的非线性台后土压力桥台位移关系曲线。对于桩土相互作用的模拟,模型选用美国API设计手册[18]中推荐的非线性土压力桩身位移关系曲线。模型的材料特性、荷载工况、边界条件等信息参见文献[5]。
2.3环境振动试验及模型验证
为了评价Isola della Scala桥的性能,本文中通过定期进行环境振动试验来获得该桥的频率、周期等模态参数以及关键节点的等效刚度。第1批的2次试验已经在2010年9月和2011年2月完成。
利用实测的试验数据,本文中选用绝对频率差异法和模态置信度法来验证有限元模型的正确性。绝对频率差异法是将环境振动试验实测的桥梁频率与有限元模型计算得到的频率代入公式(1)计算得到绝对频率差异DF,即
DF=|fTEST-fFEM|fTEST(1)
式中:fTEST为试验实测的桥梁频率;fFEM为有限元模型计算的桥梁频率。
模态置信度是一个统计学上的相关系数,取值为0~1。将实测结果与有限元模型计算结果进行对比,若环境振动试验所测的振型与有限元模型计算的振型相关较好,则模态置信度取值大于0.85[19]。模态置信度CMAC的具体计算方法为
CMAC(φA,i,φB,j)=(φTA,iφB,j)2(φTA,iφA,i)(φTB,jφB,j)(2)
式中:φA,i为数据组A的第i阶模态;φB,j为数据组B的第j阶模态。
由于篇幅限制,选取前3阶横向振型进行绝对频率差异法和模态置信度法(MAC)分析,其计算结果分别见表3和表4。从比较结果可以发现,有限元模型能较好地模拟实桥的性能。
表3绝对频率差异的对比
Tab.3Comparisons of Absolute Frequency Discrepancy模态有限元模型计算
的频率/Hz第1次试验第2次试验频率/HzDF/%频率/HzDF/%12.8932.8322.22.9301.323.0283.1182.93.1223.033.2063.4446.93.4607.3利用有限元模型,本文中针对模型的不同部位进行深入分析,发现主梁桥墩节点的刚度是一个重要的影响因素。对于Isola della Scala桥,主梁桥墩节点的实际转动刚度是介于铰接与刚接之间。现有模型采用纯铰接进行模拟会导致有限元计算结果与环境振动试验结果稍有偏差。因此本文中以试验结果为基础,利用最小二乘法推导出实桥中主梁桥
表4模态置信度的对比
Tab.4Comparisons of Modal Assurance Criterion模态有限元模型模态置信度第1次试验第2次试验10.9100.89920.7330.90630.7820.737墩节点的转动刚度(表5),从而对有限元模型进行修正。
表5主梁桥墩节点修正后的转动刚度
Tab.5Modified Rotation Stiffness of
Girderpier Connection旋转轴方向转动刚度/[(MN·m)·rad-1]x纵桥向4.8×103y竖桥向0z横桥向1.0×1053整体式桥台桥梁极限长度计算
3.1极限长度简化计算公式
根据大量分析发现,温度升降所产生的土结构相互作用是限制整体桥总长度的主要因素。本文中首先根据所有跨的变形情况和静力平衡关系,提出当桥跨总数量分别为奇数和偶数2种不同情况时,桥梁在温度变化作用下的位移计算公式为:
当桥跨总数量为奇数时
ΔLi=ΔL1i=1
(3+K1LEA)ΔL1i=2
(2+Ki-1LEA)ΔLi-1-ΔLi-23≤i≤n(3)
当桥跨总数量为偶数时
ΔLi=ΔL1i=1
(2+K1LEA)ΔL1i=2
(2+Ki-1LEA)ΔLi-1-ΔLi-23≤i≤n(4)
式中:ΔLi为第i跨的位移;E为混凝土弹性模量;A为主梁横截面积;L为桥梁总长;Ki为第i跨桥墩侧向刚度。
联立公式(3)和公式(4),可以获得公式(5),即
ΔLi=ciΔL1(5)
式中:ci为第i跨的位移,是与Ki-1,L,EA均有关的参数,ci=fi(Ki-1L/EA),对于混凝土的开裂和收缩徐变,通过改变其弹性模量E进行考虑。
endprint
根据第n跨的变形协调条件和公式(5),可以推导出公式(6),即
Nn=EA[αΔT-(cn-cn-1)ΔL1/L](6)
式中:Nn为第n跨水平力;ΔT为温度变化量。
桥台受力如图3所示,其中,M为弯矩,V为剪力,hD为主梁高度,d为桥台厚度,np为桩的数量,Vp为桩的最大抗剪能力,Pb为桥台后土层的压力,γ为台后填土单位质量,Hb为桥台高度,Ks为桥台后土压力系数[17]。假设当桥台达到最大剪力和弯矩时,桩基础顶部达到最大的塑性弯矩和承载力,则第n跨水平力可以采用公式(7)进行保守计算,即
Nn=Pb+npVp(7)
图3桥台受力
Fig.3Forces on Abutment桥台后土层的压力可以简化为三角形分布,采用公式(8)进行计算,即
Pb=12KsγH2bwb(8)
式中:wb为桥台宽度。
当只考虑升温影响时,公式(8)变为公式(9),即
Pb=12(K0+kpΔLnHb)γH2bwb(9)
式中:K0为静止土的压力系数;kp为被动土的压力系数。
联立公式(6),(7),则可以获得ΔL1的计算公式(10),即
ΔL1=EAαΔT-npVp-K0γH2bwb/2EA(cn-cn-1)+kpcnγHbLwb/2L(10)
对于第n跨的位移ΔLn,可以通过公式(11)计算获得,即
ΔLn=EAαΔT-npVp-K0γH2bwb/2EA(cn-cn-1)+kpcnγHbLwb/2cnL(11)
3.2极限长度计算公式的非线性修正
笔者所提出的整体桥的极限长度计算公式只能考虑结构的线弹性响应。为了更准确地预测整体桥极限长度,考虑结构的非线性响应十分必要,其主要有以下3种不同的方法:
(1)根据跨数和不同温度荷载修改每一跨的抗压刚度。
(2)根据不同位移所产生的桥墩转动值修改沿纵向桥的桥墩侧向刚度。
(3)考虑台后土抗力和桩侧土抗力与位移的非线性关系。
从上述分析可知,主梁桥墩节点的刚度是影响桥梁性能的一个重要因素。因此,本文中选择修改沿纵向桥的桥墩侧向刚度对公式(11)进行非线性修正,通过试算可以得到桥墩侧向刚度系数的修正公式,即
Ki,m=Kii3/2(12)
式中:Ki为未修正的桥墩侧向刚度;Ki,m为非线性修正后的桥墩侧向刚度。
将非线性修正后的公式计算结果与有限元模型结果进行对比,结果如图4所示。从图4可以看出,非线性修正后的公式计算结果与考虑塑性铰的理想化模型以及实桥模型吻合较好,可用于预估整体桥的极限长度。
图4简化计算公式与有限元模型位移对比
Fig.4Displacement Comparisons Between Simplified
Formula and Finite Element Model3.3极限长度计算
整体桥极限长度受到多个因素的综合影响,包括桥墩的极限转动能力、桥台的极限强度、温度位移产生的疲劳影响、桥头搭板的耐久性等。
3.3.1桥墩转动能力和桥台强度
考虑桥墩的极限转动能力,即第1跨的位移必须满足桥墩的转动性能,则第n跨的位移需要满足公式(13)
ΔLn≤cncn-1θprHpr(13)
式中:θpr为桥墩的转动能力;Hpr为桥墩高度。
考虑桥台的极限强度时,可以假设桥台位移很大时,其桩基础在早期就达到塑性铰,但其仍然可以承受一定的荷载,因此在某些情况下,桥台的剪力和弯矩有可能比桥墩更早达到极限状态[20]。根据受力平衡原理,假设桥台极限剪力和弯矩出现的位置如图3所示,可以推导出临界剪力和弯矩的计算公式[21]。考虑升温的作用,则第n跨的位移需要满足公式(14),(15)
ΔLn≤2(Va,cr-npVp)Hbkpγ[H2b-(hD+d)2]wb-K0Hbkp(14)
ΔLn≤Ma,crHb-npHb[Mp+Vp(Hb-hD)]kpγ[(Hb-hD)3/3+hD(Hb-hD)2/2]wb-
K0Hbkp(15)
式中:Va.cr为桥台处的临界剪力;Ma.cr为桥台处的临界弯矩。
综上所述,通过控制第n跨的位移ΔLn,即公式(13)~(15)的较小值,从而控制整体桥的最大跨数ns,进而估算全桥极限长度Ls,Ls=nsL。以Isola della Scala桥为实例,考虑升温20 ℃情况下,不同跨数对应的热膨胀位移见图5。从图5可以看出,桥墩的转动能力是限制整体桥跨数的关键因素。本例中单跨30 m,最大跨数可以达到18跨,因此整体桥总长预估可达到540 m。
图5不同跨数的热膨胀位移
Fig.5Thermal Displacements of Different Span Numbers3.3.2温度位移产生的疲劳影响
由于整体桥取消了伸缩缝和支座,因此温度变化产生的横向荷载被认为是限制整体桥极限长度的重要因素之一。整体桥中桩的温度位移是由每年随季节温度变化所产生的一个主要的往复位移和每天温度变化所产生的大量小往复位移所组成[9,10,22]。因此在估算整体桥的极限长度时,需要考虑这些由于温度荷载所产生的往复位移对桥梁结构的疲劳影响。本文中以Isola della Scala桥为实例,采用一个简单且保守的方式来考虑温度位移产生的疲劳影响,即温度变化(20 ℃)和桥梁的材料强度均考虑折减系数0.5,其余参数不变。利用修正后的简化计算公式,考虑疲劳影响的不同跨数对应的热膨胀位移见图6。本例中单跨30 m,最大跨数可达15跨,故考虑疲劳影响时,整体桥总长预估可达到450 m。
图6考虑疲劳影响的不同跨数的热膨胀位移
Fig.6Thermal Displacements of Different Span
Numbers with Considering of Fatigue Effect3.3.3桥头搭板的耐久性
随着整体桥长度增大,桥梁端部的位移同样增大,同时传递到桥头搭板以及接线道路的位移也相应增大,因此桥头搭板的耐久性也成为影响整体桥极限长度的重要因素之一。很多学者都认为对于整体桥,必须要选择合适的桥头搭板,从而避免桥头跳车、台后路面开裂或沉降等病害[2324]。瑞士学者针对整体桥中温度荷载所产生的位移对桥头搭板性能影响进行了试验和数值分析,并设计出一种搭板形式可适用于桥梁端部水平位移不超过43 mm的整体桥[25]。因此假设升温20 ℃,考虑桥头搭板的耐久性,整体桥总长预估可达到430 m。4结语
整体式桥台桥梁作为一种从桥梁全寿命方面考虑最为经济的方案,不仅适用于中短长度的桥梁,还适用于超长桥梁。本文中介绍了超长整体桥的发展现状,以目前世界上最长的整体式桥台桥梁Isola della Scala桥为实例,建立有限元模型并提出极限长度修正计算公式。利用该简化计算公式,可以预估不同限制条件下整体式桥台桥梁的极限长度。当考虑桥墩的转动能力和桥台的承载能力时,极限长度可以达到540 m;当考虑温度位移产生的疲劳影响时,极限长度可以达到450 m;当考虑桥头搭板的耐久性时,极限长度可以达到430 m。参考文献:
References:[1]陈宝春,庄一舟,BRISEGHELLA B.无伸缩缝桥梁[M].北京:人民交通出版社,2013.
CHEN Baochun,ZHUANG Yizhou,BRISEGHELLA B.Jointless Bridge[M].Beijing:China Communications Press,2013.
endprint
[2]XUE J Q.Retrofit of Existing Bridges with Concept of Integral Abutment Bridge:Static and Dynamic Parametric Analyses[D].Trento:University of Trento,2013.
[3]BRISEGHELLA B,ZORDAN T.Integral Abutment Bridge Concept Applied to the Rehabilitation of a Simply Supported Prestressed Conventional Concrete Superstructure[J].Structural Concrete,2006,8(1):2533.
[4]BURDETTE E G,HOWARD S C,INGRAM E E,et al.Behavior of Pile Supported Integral Abutments[C]//Constructed Facilities Center.Integral Abutment and Jointless Bridges (IAJB 2005).Baltimore:Constructed Facilities Center,2005:222232.
[5]ZORDAN T,BRISEGHELLA B,LAN C.Parametric and Pushover Analyses on Integral Abutment Bridge[J].Engineering Structures,2011,33(2):502515.
[6]ZORDAN T,BRISEGHELLA B.Attainment of an Integral Abutment Bridge Through the Refurbishment of a Simply Supported Structure[J].Structural Engineering International,2007,17(3):228234.
[7]BAPTISTE K T,KIM W,LAMAN J A.Parametric Study and Length Limitations for Prestressed Concrete Girder Integral Abutment Bridges[J].Structural Engineering International,2011,21(2):151156.
[8]EVANGELISTA S.200meterlong Bridges Without Expansion Joints:Is It Possible?[R].Lausanne:EPFL,2011.
[9]DICLELI M,ALBHAISI S M.Effect of Cyclic Thermal Loading on the Performance of Steel Hpiles in Integral Bridges with Stubabutments[J].Journal of Constructional Steel Research,2004,60(2):161182.
[10]DICLELI M,ALBHAISI S M.Estimation of Length Limits for Integral Bridges Built on Clay[J].Journal of Bridge Engineering,2004,9(6):572581.
[11]BAKEER R M,MATTEI N J,ALMALIK B K,et al.Evaluation of DOTD Semiintegral Bridge and Abutment System[R].Baton Rouge:Louisiana Transportation Research Center,2005.
[12]KUNIN J,ALAMPALLI S.Integral Abutment Bridges:Current Practice in United States and Canada[J].Journal of Performance of Constructed Facilities,2000,14(3):104111.
[13]PARASCHOS A,AMDE A M.Integral Abutment Bridge:a Survey on the Status of Use,Problems,and Costs Associated with Integral Abutment Bridges[R].Tuscaloosa:Tina Grady Barbaccia,2011.
[14]HUSAIN I,BAGNARIOL D.Integral Abutment Bridges[R].Ontario:Ontario Ministry of Transportation,1996.
[15]OLSON S M,LONG J H,HANSEN J R,et al.Modification of IDOT Integral Abutment Design Limitations and Details[R].Urbana:University of Illinois at UrbanaChampaign,2009.
[16]LIU D,MAGLIOLA R A,DUNKER K F.Integral Abutment Bridges—Iowa and Colorado Experience[C]//Constructed Facilities Center.Integral Abutment and Jointless Bridges(IAJB2005).Baltimore:Constructed Facilities Center,2005:136147.
[17]BARKER R M,DUNCAN J M,ROJIANI K B,et al.Manuals for the Design of Bridge Foundations:Shallow Foundations,Driven Piles,Retaining Walls and Abutments,Drilled Shafts,Estimating Tolerable Movements,and Load Factor Design Specifications and Commentary[R].Washington DC:Transportation Research Board,1991.
[18]API 2000,Recommended Practice for Planning,Designing and Constructing Fixed Offshore Platforms—Working Stress Design[S].
[19]ALLEMANG R J.The Modal Assurance Criteriontwenty Years of Use and Abuse[J].Sound and Vibration,2003,37(8):1423.
[20]BOZORGZADEH A.Effect of Structure Backfill on Stiffness and Capacity of Bridge Abutments[D].San Diego:University of California,2007.
[21]ERHAN S,DICLELI M.Live Load Distribution Equations for Integral Bridge Substructures[J].Engineering Structures,2009,31(5):12501264.
[22]ENGLAND G L,TSANG N C M,BUSH D I.Integral Bridges:a Fundamental Approach to the Timetemperature Loading Problem[M].London:Thomas Telford,2000.
[23]BURKE M P.Integral and Semiintegral Bridges[M].Oxford:WileyBlackwell,2009.
[24]ARSOY S,BARKER R M,DUNCAN J M.The Behavior of Integral Abutment Bridges[R].Virginia:Virginia Transportation Research Council,1999.
[25]DREIER D,BURDET O,MUTTONI A.Transition Slabs of Integral Abutment Bridges[J].Structural Engineering International,2011,21(2):144150.
endprint
[2]XUE J Q.Retrofit of Existing Bridges with Concept of Integral Abutment Bridge:Static and Dynamic Parametric Analyses[D].Trento:University of Trento,2013.
[3]BRISEGHELLA B,ZORDAN T.Integral Abutment Bridge Concept Applied to the Rehabilitation of a Simply Supported Prestressed Conventional Concrete Superstructure[J].Structural Concrete,2006,8(1):2533.
[4]BURDETTE E G,HOWARD S C,INGRAM E E,et al.Behavior of Pile Supported Integral Abutments[C]//Constructed Facilities Center.Integral Abutment and Jointless Bridges (IAJB 2005).Baltimore:Constructed Facilities Center,2005:222232.
[5]ZORDAN T,BRISEGHELLA B,LAN C.Parametric and Pushover Analyses on Integral Abutment Bridge[J].Engineering Structures,2011,33(2):502515.
[6]ZORDAN T,BRISEGHELLA B.Attainment of an Integral Abutment Bridge Through the Refurbishment of a Simply Supported Structure[J].Structural Engineering International,2007,17(3):228234.
[7]BAPTISTE K T,KIM W,LAMAN J A.Parametric Study and Length Limitations for Prestressed Concrete Girder Integral Abutment Bridges[J].Structural Engineering International,2011,21(2):151156.
[8]EVANGELISTA S.200meterlong Bridges Without Expansion Joints:Is It Possible?[R].Lausanne:EPFL,2011.
[9]DICLELI M,ALBHAISI S M.Effect of Cyclic Thermal Loading on the Performance of Steel Hpiles in Integral Bridges with Stubabutments[J].Journal of Constructional Steel Research,2004,60(2):161182.
[10]DICLELI M,ALBHAISI S M.Estimation of Length Limits for Integral Bridges Built on Clay[J].Journal of Bridge Engineering,2004,9(6):572581.
[11]BAKEER R M,MATTEI N J,ALMALIK B K,et al.Evaluation of DOTD Semiintegral Bridge and Abutment System[R].Baton Rouge:Louisiana Transportation Research Center,2005.
[12]KUNIN J,ALAMPALLI S.Integral Abutment Bridges:Current Practice in United States and Canada[J].Journal of Performance of Constructed Facilities,2000,14(3):104111.
[13]PARASCHOS A,AMDE A M.Integral Abutment Bridge:a Survey on the Status of Use,Problems,and Costs Associated with Integral Abutment Bridges[R].Tuscaloosa:Tina Grady Barbaccia,2011.
[14]HUSAIN I,BAGNARIOL D.Integral Abutment Bridges[R].Ontario:Ontario Ministry of Transportation,1996.
[15]OLSON S M,LONG J H,HANSEN J R,et al.Modification of IDOT Integral Abutment Design Limitations and Details[R].Urbana:University of Illinois at UrbanaChampaign,2009.
[16]LIU D,MAGLIOLA R A,DUNKER K F.Integral Abutment Bridges—Iowa and Colorado Experience[C]//Constructed Facilities Center.Integral Abutment and Jointless Bridges(IAJB2005).Baltimore:Constructed Facilities Center,2005:136147.
[17]BARKER R M,DUNCAN J M,ROJIANI K B,et al.Manuals for the Design of Bridge Foundations:Shallow Foundations,Driven Piles,Retaining Walls and Abutments,Drilled Shafts,Estimating Tolerable Movements,and Load Factor Design Specifications and Commentary[R].Washington DC:Transportation Research Board,1991.
[18]API 2000,Recommended Practice for Planning,Designing and Constructing Fixed Offshore Platforms—Working Stress Design[S].
[19]ALLEMANG R J.The Modal Assurance Criteriontwenty Years of Use and Abuse[J].Sound and Vibration,2003,37(8):1423.
[20]BOZORGZADEH A.Effect of Structure Backfill on Stiffness and Capacity of Bridge Abutments[D].San Diego:University of California,2007.
[21]ERHAN S,DICLELI M.Live Load Distribution Equations for Integral Bridge Substructures[J].Engineering Structures,2009,31(5):12501264.
[22]ENGLAND G L,TSANG N C M,BUSH D I.Integral Bridges:a Fundamental Approach to the Timetemperature Loading Problem[M].London:Thomas Telford,2000.
[23]BURKE M P.Integral and Semiintegral Bridges[M].Oxford:WileyBlackwell,2009.
[24]ARSOY S,BARKER R M,DUNCAN J M.The Behavior of Integral Abutment Bridges[R].Virginia:Virginia Transportation Research Council,1999.
[25]DREIER D,BURDET O,MUTTONI A.Transition Slabs of Integral Abutment Bridges[J].Structural Engineering International,2011,21(2):144150.
endprint
[2]XUE J Q.Retrofit of Existing Bridges with Concept of Integral Abutment Bridge:Static and Dynamic Parametric Analyses[D].Trento:University of Trento,2013.
[3]BRISEGHELLA B,ZORDAN T.Integral Abutment Bridge Concept Applied to the Rehabilitation of a Simply Supported Prestressed Conventional Concrete Superstructure[J].Structural Concrete,2006,8(1):2533.
[4]BURDETTE E G,HOWARD S C,INGRAM E E,et al.Behavior of Pile Supported Integral Abutments[C]//Constructed Facilities Center.Integral Abutment and Jointless Bridges (IAJB 2005).Baltimore:Constructed Facilities Center,2005:222232.
[5]ZORDAN T,BRISEGHELLA B,LAN C.Parametric and Pushover Analyses on Integral Abutment Bridge[J].Engineering Structures,2011,33(2):502515.
[6]ZORDAN T,BRISEGHELLA B.Attainment of an Integral Abutment Bridge Through the Refurbishment of a Simply Supported Structure[J].Structural Engineering International,2007,17(3):228234.
[7]BAPTISTE K T,KIM W,LAMAN J A.Parametric Study and Length Limitations for Prestressed Concrete Girder Integral Abutment Bridges[J].Structural Engineering International,2011,21(2):151156.
[8]EVANGELISTA S.200meterlong Bridges Without Expansion Joints:Is It Possible?[R].Lausanne:EPFL,2011.
[9]DICLELI M,ALBHAISI S M.Effect of Cyclic Thermal Loading on the Performance of Steel Hpiles in Integral Bridges with Stubabutments[J].Journal of Constructional Steel Research,2004,60(2):161182.
[10]DICLELI M,ALBHAISI S M.Estimation of Length Limits for Integral Bridges Built on Clay[J].Journal of Bridge Engineering,2004,9(6):572581.
[11]BAKEER R M,MATTEI N J,ALMALIK B K,et al.Evaluation of DOTD Semiintegral Bridge and Abutment System[R].Baton Rouge:Louisiana Transportation Research Center,2005.
[12]KUNIN J,ALAMPALLI S.Integral Abutment Bridges:Current Practice in United States and Canada[J].Journal of Performance of Constructed Facilities,2000,14(3):104111.
[13]PARASCHOS A,AMDE A M.Integral Abutment Bridge:a Survey on the Status of Use,Problems,and Costs Associated with Integral Abutment Bridges[R].Tuscaloosa:Tina Grady Barbaccia,2011.
[14]HUSAIN I,BAGNARIOL D.Integral Abutment Bridges[R].Ontario:Ontario Ministry of Transportation,1996.
[15]OLSON S M,LONG J H,HANSEN J R,et al.Modification of IDOT Integral Abutment Design Limitations and Details[R].Urbana:University of Illinois at UrbanaChampaign,2009.
[16]LIU D,MAGLIOLA R A,DUNKER K F.Integral Abutment Bridges—Iowa and Colorado Experience[C]//Constructed Facilities Center.Integral Abutment and Jointless Bridges(IAJB2005).Baltimore:Constructed Facilities Center,2005:136147.
[17]BARKER R M,DUNCAN J M,ROJIANI K B,et al.Manuals for the Design of Bridge Foundations:Shallow Foundations,Driven Piles,Retaining Walls and Abutments,Drilled Shafts,Estimating Tolerable Movements,and Load Factor Design Specifications and Commentary[R].Washington DC:Transportation Research Board,1991.
[18]API 2000,Recommended Practice for Planning,Designing and Constructing Fixed Offshore Platforms—Working Stress Design[S].
[19]ALLEMANG R J.The Modal Assurance Criteriontwenty Years of Use and Abuse[J].Sound and Vibration,2003,37(8):1423.
[20]BOZORGZADEH A.Effect of Structure Backfill on Stiffness and Capacity of Bridge Abutments[D].San Diego:University of California,2007.
[21]ERHAN S,DICLELI M.Live Load Distribution Equations for Integral Bridge Substructures[J].Engineering Structures,2009,31(5):12501264.
[22]ENGLAND G L,TSANG N C M,BUSH D I.Integral Bridges:a Fundamental Approach to the Timetemperature Loading Problem[M].London:Thomas Telford,2000.
[23]BURKE M P.Integral and Semiintegral Bridges[M].Oxford:WileyBlackwell,2009.
[24]ARSOY S,BARKER R M,DUNCAN J M.The Behavior of Integral Abutment Bridges[R].Virginia:Virginia Transportation Research Council,1999.
[25]DREIER D,BURDET O,MUTTONI A.Transition Slabs of Integral Abutment Bridges[J].Structural Engineering International,2011,21(2):144150.
endprint