电子探针测年方法应用于晶质铀矿的成因类型探讨
2014-08-01赵慧博刘亚非叶美芳王志海
赵慧博,刘亚非*,阳 珊,叶美芳,王志海,王 博,常 娜
(1.中国地质调查局西安地质调查中心,陕西 西安 710054;2.安徽省地质实验研究所,安徽 合肥 230001)
电子探针Th-U-Pb化学测年法在独居石原位定年中普遍应用[1-5],而在Th、U、Pb含量高的晶质铀矿、沥青铀矿等高铀矿物中的应用较少,国内外仅少数学者发表了相关成果[5-9],均未引起足够的重视,其原因可能与晶质铀矿的稀少性、颗粒细小、放射性有关,一直未得到推广,但不可否认电子探针在铀矿定年方面的高空间分辨率与精度分析的优势。本文在测试某铁矿床样品过程中首次发现较多且颗粒较大的晶质铀矿,并判断赋矿岩石为古老变质岩基体,根据观察其成因与著名的澳大利亚变质型铀矿有相似之处。针对此次发现,采用偏光显微镜下观察与电子探针测试相结合的方式,利用显微镜观察晶质铀矿的大小、形态、赋存状态以及判断其成因类型,且与何种蚀变作用相关,继而利用电子探针在铀矿定年中具高空间分辨率(可达1 μm)原位分析与数据精准的优势,尝试对其进行化学定年,通过镜下岩石的蚀变作用(进退变质现象)与年龄结果相结合,根据现象与结果区分晶质铀矿形成的不同期次,为多阶段、多期次成矿时代的划分提供理论依据。
1 地质背景
研究区铁矿床总矿区中构造形态为一近南北向的复式倒转褶皱,该铁矿位于叠加在近南北向的复式倒转褶皱上的一东西向的短轴向斜上,按其形态及成因可分为褶皱构造、断裂构造及单斜构造三类,此外尚有构造角砾岩及构造破碎带。矿体呈似层状富集,赋矿岩性有透闪黑云片岩、角闪片岩、蛇纹石岩、透闪石片岩、菱铁矿岩等,以菱铁矿岩为主,含铁矿物主要为磁铁矿;透明矿物主要有黑云母、透闪石、角闪石、蛇纹石等。如图1所示。岩石经过进变质至角闪岩相,又后退变质至绿片岩相,磁铁矿主要成于前进变质作用,在以后的变质作用或变质热液活动期亦有少量磁铁矿形成;研究的晶质铀矿发现于该地区岩性为绿泥石化阳起石黑云母岩中,该岩石为本次研究选取的样品。
图1 绿泥石化阳起石黑云母岩中矿物特征
2 镜下观察
显微镜下观察岩石内部结构、形态,辨认蚀变矿物及铀矿赋存状态是提供岩石信息的首要一步,本文使用德国蔡司公司生产的型号为Axioskop 40的Zeiss偏光显微镜,进行光、薄片鉴定,确定岩性、蚀变现象、铀矿特征及赋存位置。
经观察,赋矿岩石为绿泥石化阳起石黑云母岩,该岩石的主要组成矿物为黑云母、阳起石,其中黑云母多退变质变为绿泥石,变质程度较深,通过蚀变产物推测原岩可能为基性岩-超基性岩,黑云母为原岩基性矿物的蚀变产物。晶质铀矿即产出黑云母晶体或呈黑云母假象的绿泥石晶体内部或间隙中。
其中,晶质铀矿在反射光下特征表现为:晶体形态呈自形-半自形粒状,板状、不规则状,晶体边缘常圆滑。颗粒大小不等,小至1 μm×1 μm,大至 236 μm×319 μm,颗粒小的有集中分布的特点,反射色为灰色微带暗棕色,反射率低,约在16左右,内反射色为暗褐色,均质性,见两组发育完全、接近正交的解理,边部具宽窄不等的放射晕边。
通过镜下观察可以得出,独立的铀矿物晶质铀矿形成于变质程度较深的变质岩中,且其放射晕边的普遍发育表明是一套古老的变质岩,另外晶质铀矿赋存于黑云母与绿泥石内部与间隙中,表明其成因与黑云母、绿泥石有密切关系,成因主要由热液蚀变聚集导致,多期蚀变可能导致晶质铀矿分期次生成。故针对以上结论,利用电子探针化学测年对其成矿期次展开探讨。
3 电子探针测试
电子探针测年技术以放射性核素衰变理论为基础,通过测定U、Th、Pb氧化物的含量,根据衰变公式最终计算年龄。此种测年方法具有简单快捷、无损检测、微区原位、通过显微背散射图像避开表层、裂隙等不准确位置等优点,但也存在一些不足,如晶质铀矿封闭性较差、对年龄较小的铀矿分析不准确等[10]。
本文利用西安地质矿产研究所测试中心型号为JXA-8230电子探针对晶质铀矿、独居石等进行U、Pb、Th等氧化物含量分析,通过电子探针背散射图像观察,测试位置远离裂隙、边缘等易发生Pb丢失部位。测试条件为:电子探针加速电压20 kV,束流1×10-8A,束斑直径1~5 μm,修正方法ZAF,标准样品选用U、ThO2、PbCrO4、Y3Al5O12,X射线的 Mα波段测定Th和Pb,Mβ测定U,Lα测定Y。
3.1 钍铅铀的含量
由表1的分析结果看出,研究区晶质铀矿的主含量元素UO2含量变化范围在49.44%~83.79%之间,平均值为 66.56%;PbO含量变化范围在6.57%~29.37%之间,平均值为17.78%;ThO2含量变化范围在0.55%~14.99%之间,平均值为6.90%。与徐国庆等[11]研究总结的我国其他产地变质型晶质铀矿相比,可以看出PbO和ThO2的含量较后者高。其中Th的含量与温度有关,温度越高,含量越高,说明晶质铀矿形成温度较高,证实了前面变质程度很深的结论。Pb的含量与放射性衰变有关,即与成矿年龄呈正相关关系,故推断铀矿成因类型为较古老的变质成因。
表1 研究区晶质铀矿与我国其他地区变质型铀矿成分对比
3.2 电子探针定年计算方法及比较
因电子探针具有高的空间分辨率和真正意义上的原位定年,可以在很小的测年矿物颗粒上作出年龄分布图,即可以得到多阶段的年龄记录,又使年龄分析的地质意义更为明确。据多年来的同位素测年分析结果表明,由于晶质铀矿、独居石中非放射性产生的Pb含量非常少,通常可以忽略不计。
选取晶质铀矿16个较大新鲜且裂隙较少颗粒进行测试,个别颗粒选取2~3个点,总测点数26个,测出U、Pb、Th氧化物的含量,根据U-Th-Pb等放射性元素的衰变规律,并参照前人研究,采用经验公式法与软件法分别进行计算,经验公式法目的是为了更简便快捷地进行计算,将其与原始公式编程软件计算结果比较,目的是得出更适应该类型晶质铀矿计算的经验公式,方便简易计算。结果见表2。
表2 晶质铀矿电子探针元素U、Pb、Th含量与年龄计算结果
采用的四种计算方法依次为:
算法1(Age1):t=Pb×7550/(U+0.36Th)
式中,元素Th、U、Pb为质量百分比[Ranchin(1968),转引自文献[10]]。
算法2(Age2):t=λ-1ln(1.104Pb/U+1)
式中,λ=0.000155125 Ma-1,Pb、U为原子百分数(Bowles[7])。
算法3(Age3):
t=Pb×1010/(1.612U+4.95Th)式中,U、Th、Pb的量为原子百分数(Cameron-Schimann[12])。
算法4(Age4):软件法(利用美国McSwiggen & Associates研制的MonaziteAge软件),经6组电子探针测试误差值计算,误差年龄平均值在17 Ma左右。从图2可以看出,Cameron-Schimann法计算出的年龄值相对于相对于Ranchin法与Bowles法而言,与MonaziteAge软件曲线更贴近,故推断计算方法Cameron-Schimann法[12]与软件公式法计算出来的结果最吻合。因计算得出的年龄值多在1500 Ma以上,故相对来说Cameron-Schimann经验公式法更适宜于年龄偏大的样品进行简易计算。另外,Ranchin法对计算200 Ma以下的结果较好,对年龄值较大的样品给出的值偏大[10];Bowles法没有考虑Th的影响,当Th含量高时,给出的年龄值偏小,当Th含量低时,给出的年龄值比正确值偏大[7]。
图2 四种方法计算年龄结果对比图
3.3 晶质铀矿年龄分布区间及成矿期次的指示
根据软件年龄计算结果,进行概率分布统计作图,从图3和图4可以看出:年龄峰期范围大致可以分为三个区间,指示成矿的三个期次。
图3 晶质铀矿成矿年龄概率统计图
图4 晶质铀矿年龄区间分布图
第一个区间是(2880±17) Ma左右,为新太古代时期。据相关地质资料,利用同位素地质全岩Rb-Sr分析,得出Rb-Sr等时线年龄值在(2681±65) Ma~(2963±7.98) Ma之间,多数集中在2700 Ma左右[13],代表原岩主体的形成年龄。此区间的年代正好与原岩成岩年龄相符,所以推断为成岩期便有少量晶质铀矿的产生,为成矿阶段的第一期次。但是存在的问题是测试的点位中只有一个点的数据在此范围内,数据少没有很好的代表性,这里只提出探讨,需要更多样品的测试结果与讨论。
第二个区间是(1654±17) Ma ~(1805±17) Ma,为中元古代中期。此区间分布范围最集中,为晶质铀矿主要成矿时间,为成矿的主成矿期次。
第三个区间是(657±17) Ma~(807±17) Ma,为新元古代南华纪时期。结合镜下观察,黑云母普遍发生绿泥石化,推测此区间为后期热液涌入,发生蚀变,后期活化再改造的阶段,为成矿的第三阶段。
3.4 晶质铀矿环带电子探针化学定年
在成矿期次建立的基础上,选取两个较大粒度、且具代表性的晶质铀矿从边缘-中间-边缘进行电子探针化学年龄测定,旨在对矿床年龄以及热液活化改造年龄的分段性作进一步探讨,进而对该地区古老的变质岩的演化历史提供可靠的年龄依据。
图5 U9(左)与U18(右)颗粒取点点位
选取第一个颗粒(U9),大小约200 μm(图5左),第二个颗粒(U18),大小约230 μm(图5右),测试点数均为20个,数据与40组年龄值对应表详见表3和表4,通过对年龄分布的统计,两个晶质铀矿颗粒的年龄符合前面主要成矿期年龄的范围,说明此两个晶质铀矿颗粒均在主成矿时期形成,另外对其计算年龄分段性进行探讨,制作年龄环带分布图(见图6),并得出以下结论。
表3 U9晶质铀矿环带数据
表4 U18晶质铀矿环带数据
图6 U9和U18颗粒年龄分布图
(1)U18颗粒年龄变动范围较U9颗粒大。结合背散射图像观察其颗粒光滑程度不难看出,U9颗粒表面较新鲜,受到较少的后期改造作用,10~15点之间有一横贯的裂隙;U18颗粒在7~15点处,则出现较多的裂隙,受到后期改造作用明显。
(2)两者的年龄分布图存在共性。即:从边缘→中间→边缘均出现年龄值由高→低→高的现象,出现了分段性,表现为在裂隙发育处年龄值偏低,推测在裂隙发育处Pb发生了流失现象,故计算出的年龄值偏低。此结果说明铀矿经历了后期改造作用,导致放射性成因铅丢失,因为只有在明显的流体活动下,Pb的扩散比较明显。
3.5 其他相关元素及矿物对比
因研究区铀矿属于变质型铀矿,但我国的铀矿类型主要以沉积型矿床为主,通过大量的数据比较发现,元素Y在两种不同的矿床中含量具有不同的表现特征,对变质型铀矿与沉积型铀矿的Y的氧化物含量进行对比(表5),选取的沉积型铀矿的数据来自我国其他地区,从中发现其中可能存在相关的规律。
表5 研究区变质型铀矿与其他地区沉积型铀矿的Y2O3与UO2含量
通过作图(图7)对比发现,沉积型铀矿UO2含量较研究区变质型UO2低,但沉积型铀矿Y2O3含量较变质型铀矿Y2O3高。但是无论是哪一种成因类型的铀矿物,Y2O3含量与UO2含量均统一呈负相关关系。所以初步可以得出结论:Y2O3的含量多少及与UO2之间的负相关关系对判断铀矿成因类型具指示意义,此结论需在以后的研究中继续验证。
图7 研究区变质型铀矿与其他地区沉积型铀矿的Y2O3与UO2含量对比图
3.6 其他相关元素成分
国外学者通过对澳大利亚的古老变质型铀矿研究发现,矿床周围区域中的流体-岩石相互作用的程度很高,具丰富的绿泥石化流体作用。绿泥石是澳大利亚所有铀矿床中唯一普遍、富集的矿物,铀矿的形成与绿泥石的关系被国外许多学者热烈讨论[14-17]。在澳大利亚Ranger矿床,赋矿岩性为石墨黑云母绿泥石片岩,矿化伴随着强烈的绿泥石化作用[18]。在Nabarlek矿床中,矿体也主要生成于绿泥石化、磁铁矿析出阶段,晶质铀矿产生再活化富集。其中绿泥石部分或完全交代黑云母,并将绿泥石根据不同的成分划分成三个世代[18]。在成矿时期上,Hegge等[19]认为东Allgator河地区的铀矿的活化初始阶段正好与区域变质作用年龄相符。
本研究也通过电子探针对黑云母、绿泥石中相关元素U、Th、Pb含量做了测试,并对比黑云母、绿泥石的元素成分发现,大部分黑云母含有少量的Pb、Th,推测成岩期可能与热液蚀变作用黑云母化有关,该铀矿为一套变质型成因矿床;蚀变的绿泥石中几乎无Pb、Th,由此推测晶质铀矿的后期相对富集与黑云母的绿泥石化相关。
另外在岩石中发现了大量的独居石颗粒与金属矿物黄铁矿,据研究,变质岩中的晶质铀矿常与独居石、黄铁矿等伴生,其矿物组合的规律与前面研究相符。
4 结语
本文主要将镜下蚀变现象、电子探针测年与电子探针其他相关元素分析结果相结合,探讨了晶质铀矿的成矿年龄及成矿规律。研究发现,晶质铀矿的成因类型与澳大利亚著名的变质型铀矿相似,均为古老的变质型,且周围的脉石矿物均为绿泥石;根据电子探针计算年龄结果,主要成矿期在(1654±17) Ma ~(1805±17) Ma,为中元古代中期,后期活化富集时期在(657±17) Ma~(807±17) Ma,为新元古代南华纪时期,此阶段是热液侵入,绿泥石化广泛发生的时期;通过对大颗粒晶质铀矿的环带年龄进行计算,证实后期有强烈的流体活动的发生,且主要与绿泥石化相关,与前面结论相吻合。
本文存在一些不足之处,需要进一步改进与完善:①晶质铀矿的封闭性较独居石、锆石等矿物差,容易发生铅丢失导致计算结果偏低,故本文未能用等时线年龄验证;②年龄计算数据2880 Ma与成岩年龄相符,但是此阶段年龄数据少,缺乏确凿依据,需要开展更多的测试工作;③与沉积型铀矿对比得出的元素Y与U之间的负相关关系,此结论需要大量的数据验证才能准确定论。
5 参考文献
[1] 张照志,赵磊,孟庆祝,陈卉泉.电子探针化学测年技术及其在地学中的应用[J].现代地质,2001,15(1): 69-73.
[2] 周剑雄,陈振宇,芮宗瑶.独居石的电子探针钍-铀-铅化学测年[J].岩矿测试,2002,21(4): 241-246.
[3] 李学军,郭涛,王庆飞.电子探针化学测年方法[J].地学前缘,2003,10(2): 411-413.
[4] 张文兰,王汝成,华仁民.副矿物的电子探针化学定年方法原理及应用[J].地质论评,2003,49(5): 253-260.
[5] 彭松柏,朱家平,李志昌.电子探针铀-钍-铅定年方法及其在构造分析中的应用前景[J].岩矿测试,2004,23(1): 44-45.
[6] 张昭明.电子探针在测定晶质铀矿年龄中的应用[J].放射性地质,1982(5): 408-411.
[7] Bowles J F W.Age dating of individual grains of uraninite in rocks from electron microprobe analyses [J].ChemicalGeology,1990,83(1-2): 47-53.
[8] Kempe U. Precise electron microprobe age determination in altered uraninite: Consequences on the intrusion age and the metallogenic significance of the Kirchberg granite Erzgebirge,Germany [J].ContributionstoMineralogyandPetrology,2003,145(1): 107-118.
[9] Votyakov S L,Ivanov K S,Khiller V,Bochkarev V,Erokhin Y.Chemical microprobe Th-U-Pb age dating of monazite and uraninite grans from granites of the Yamal crystalline basement [J].DokladyEarthSciences,2011,439(1): 994-997.
[10] 葛祥坤.电子探针Th-U-Pb微区测年方法及其在铀矿地质研究中的应用前景[J].铀矿地质,2008,4(3): 175-179.
[11] 徐国庆,王爱珍,顾绮芳,张静宜,张昭明,黄裕柱.我国晶质铀矿和沥青铀矿的某些矿物学特征[J].矿物学报,1982(3): 193-199.
[12] Cameron-Shimann M.Electron microprobe study of uranium minerals and its application to some Canadian deposits [D].Edmonton: University of Alberta,1978: 343.
[13] 孙玉宝.安徽霍邱李老庄铁矿-菱镁矿矿床地质特征及矿床成因类型[J].矿产与地质,2007,21(5): 535-536.
[14] Muto T,Hirono S,Kurata H.Some aspects of fixation of uranium from natural waters [J].MiningGeology,1965,15(74): 287- 298.
[15] Nutt C J.Description of drill-hole ⅧV core from the Jabiluka unconformity-type deposit,Northern Territory,Australia [R].U.S. Geological Survey Open-File Report,1984,2(1): 84-299.
[16] Ludwig K R,Grauch R I,Nutt C J,Nash J T,Frishman D,Simmons K R. Age of uranium mineralization at the Jabiluka and Ranger deposits,Northern Territory,Australia: New U-Pb isotope evidence [J].EconomicGeology,1987,82(4): 857-874.
[17] Gustafson L B,Curtis L W. Post-Kombolgie metasomatism at Jabiluka,Northern Territory,Australia,and its significance in the formation of high-grade uranium mineralization in lower proterozoic rocks [J].EconomicGeology,1983,78(1): 26-56.
[18] Ewers G R,Ferguson J.The Nabarlek uranium deposits,Northern Territory,Australia; Some petrologic and geochemical constraints on genesis [J].EconomicGeology,1983,78(5): 823-837.
[19] Hegge M R,Rowntree J C.Geologic setting and concepts on the origin of uranium deposits in the East Allgator River region,N.T.,Australia [J].EconomicGeology,1978,73(8): 1420-1429.