大跨度桥梁设计的设计要点及优化措施
2014-07-07梁吉学李闻涛
梁吉学 李闻涛
摘 要:随着经济社会的进步,交通事业得到了前所未有的发展,近年来,大跨度桥梁项目不断增多,其结构形式也趋于多样化、复杂化,而且大跨度桥梁的安全运营也关系到整个交通运输事业的发展。但是我国现有的大跨度桥梁设计还存在很多不足与缺陷需要不断优化。
关键词:大跨度桥梁;设计要点;优化措施
目前的桥梁技术虽然已经能够很好的解决大跨度桥梁现存的问题,但是随着桥梁跨度的不断增加,向着更长、更大、更柔方向发展,为了保证其建设的可靠性、耐久性、行车的舒适性、施工的简易型以及美观性,桥梁设计以及施工人员还有更多的工作要做。而大跨度桥梁结构优化设计的过程,也是为了更好的处理和解决桥梁结构的安全性、适用性以及经济合理性、美观性的过程。
1 大跨度桥梁的设计要点分析
1.1 大跨径斜拉桥设计要点。大跨径斜拉桥是一种拉索结构的桥梁,其既具有跨度大、承受力强以及稳定性高的特点,又具有较高的经济比值特点,它相比于传统的梁式结构桥梁具有更大的跨越能力。斜拉索桥梁有斜拉索、塔柱和主梁三个部分组成,在大跨径斜拉桥概念设计阶段,我们可以根据三者不同关系,组合成为多种形状的结构桥梁,例如悬浮、固定、支承等。在设计索面时,根据桥梁最大承受力克设计为单索面和双索面(双平行索面或双斜索面)两种斜索平面类型,斜拉桥的拉索不需要固定的锚碇,其本身就带有自锚特征,通常在山区河流或者峡谷跨径在200m以上,800m以下范围时,就可以选用斜拉桥结构。
1.2 大跨度悬索桥的设计要点。悬索桥是我国山区大跨度桥梁的主要类型,它由主缆、加劲梁、塔柱和锚碇几个部分组成,在山区跨径较大、高度较高的条件下,比较适合采用悬索桥的形式。现代悬索桥一般设计两个塔柱作为桥身的基本支承,塔架采用钢筋混凝土材料,其悬索的两端通过锚碇固定在两端,两个塔架将悬索桥整体分为三个部分,及中跨部分和两个边跨部分,边跨的长度需根据锚固位置和工程成本来定,一般来说,中跨与边跨多采用2:1或者4:1的长度之比来设计,而其垂跨比一般设计为1:6或者1:7(根据桥塔高度可以适当调整)。
1.3 拱桥的设计要点。拱桥无疑是我国使用历史最长的桥梁类型,传统拱桥以石拱桥为主,而近现代又加入了钢筋结构拱桥和混合类型的拱桥结构。现代拱桥结构多以钢筋混凝土、钢管混凝土拱桥为主,其施工简单、建造便捷、经济、承载能力强等特点,使得拱桥结构成为我国山区大跨度桥梁建设的重要桥梁类型。拱桥结构比较适合跨径相对较短的峡谷V字地形,钢管混凝土拱桥的拱肋可分为实体拱肋(包括单管和哑铃形截面)和桁式拱肋(根据钢管数可分为三管、四管和六管桁式)。在采用实体拱肋时需根据跨径来选择单管或者多管形式,单管的抗扭性能较高,施工简单,但是抗弯性较低,其一般用于跨径<80m的拱桥之中。而多管桁式拱肋则采用直径较小的钢管以增加其抗弯性能,其一般用于跨径>100m的钢管混凝土拱桥之中。
2 大跨度桥梁结构优化设计
2.1 局部优化。加劲梁横截面的优化。大跨度桥梁的加劲梁主要是由钢梁、混凝土梁、混合梁和叠合梁。就目前建成的大跨度桥梁中,主跨梁的主要形式多数以钢梁为主,钢梁与混凝土结合梁以及混凝土梁较少且相对较小。
斜拉索或主缆的动力优化。由于斜拉桥和悬索桥是当前大跨度桥梁建设的主要桥式,两者具有共同的特点,即都是由缆索支承,且桥面柔软,属于柔性结构,其阻尼值较低。在外部激励下,拉索极易出现大幅度的振动,如风雨交加时的出现的主梁和拉索之间的耦合振动引起的参数共振、拉索的自激振等等。拉索的大幅度振动极易引起拉索锚固端的疲劳、降低了拉索的使用寿命,严重时甚至会直接影响桥梁结构的安全系数。
桥墩及基础的优化。桥墩以及基础是桥梁重要支撑结构,也是桥梁下部结构中的重要组成部分,对桥梁的稳固性起着重要的作用,因此桥墩及基础不论在数量、位置、还是结构形式上,都对桥梁的稳固、耐久有直接的影响,但对桥梁上部结构的影响较小。因此,在对桥墩和基础进行设计时,应针对具体的桥梁进行考虑。
2.2 整体优化。大跨度桥梁都为高次超静定结构,结构复杂,设计变量多,建设和设计又涉及到多方面的因素。因此,要对其进行全面整体的优化或全过程的优化依然存在困难。这种困难不仅在于其目标函数的建立,也在于对已建立的目标函数寻求最优解的计算速度和可能性。为此,对大跨度桥梁结构的优化研究多以局部优化为主。但是综合评价一座桥梁的优劣不是仅仅凭借局部的进行评判,而是要看整体的效果和运营,因此对桥梁的整体结构进行优化设计存在着一定的难度。目前对大跨度桥梁的整体优化主要有以下几个方面:整体造价最优,整体动力性能优化,整体施工工艺优化,桥梁结构优化设计与景观优化设计相协调。
2.3 桥梁上部结构优化。上部构造形式的选择,应结合桥梁具体情况,综合考虑其受力特点、施工技术难度和经济性。简支空心板结构的桥型,施工方便,施工技术成熟;但跨径小,梁高大;由于桥梁跨径受限制,往往造成跨深沟桥梁高跨比不协调,美观性差;上部构造难以与路线小半径、大超高线形符合,且高墩数量增加;桥面伸缩缝多,行驶条件差。因而,在山区大跨度中,该类桥型一般用于地形相对平缓、填土不高的中、小桥上。预制拼装多梁式T梁在中等跨径桥中具有造价省、施工方便的特点,其造价低于整体式箱梁,是中等跨径直梁桥的常用桥型。但对于曲线梁来说,T梁为开口断面,抗扭及梁体平衡受力能力均较箱梁差,曲梁的弯矩作用对下部产生的不平衡力大。但当曲线桥的弯曲程度较小时,曲线T梁桥采用直梁设计,以翼缘板宽度调整平面线形,可减少曲梁的弯扭作用,在一定程度上可弥补曲线T梁桥受力和施工上的不足。虽然直线设臵的曲线桥仍有部分恒载及活载不平衡影响及曲线变位存在,但较曲线梁小。
2.4 桥梁下部结构优化。下部结构应能满足上部结构对支撑力的要求,同时在外形上要做到与上部结构相互协调、布臵均匀。桥墩视上部构造形式及桥墩高度采用柱式墩、空心薄壁墩或双薄壁墩等多种形式。柱式墩是目前公路桥梁中广泛采用的桥墩形式,其自重轻,结构稳定性好,施工方便、快捷,外观轻颖美观。对于连续刚构桥,要注意把握上下部结构的刚度比,减小下部结构的刚度比,减小下部结构的刚度,可减小刚结点处的负弯矩,同时减小桥墩的弯矩,也可减小温度变化所产生的内力。但是桥墩也不可以太柔,否则会使结构产生过大变形,影响正常使用,并不利于结构的整体稳定性。对于连续梁结构或连续刚构桥,各墩的稳定性受相邻桥墩的制约影响,应取全桥或至少一梁作为分析对象。稳定分析的中心问题就是确定构件在各种可能的荷载作用和边界条件约束下的临界荷载。
3 结语
随着我国交通事业的快速发展,大跨度桥梁的发展也十分迅速。如何在满足结构使用要求的前提下对桥梁结构进行合理的优化设计已经成为目前大跨度桥梁设计的重要内容。本文对大跨度桥梁的设计要点进行了概况,并提出了具体的优化措施,希望可以给同行提供参考。
参考文献
[1] 禹智涛,韩大建.基于可靠度的桥梁结构优化设计[J].广东工业大学学报.2002(03).
[2] 柴志,赵磊,卢彪.基于耐久性的桥梁结构优化设计模型[J].河南科学.2002(03).