面向大数据分析方向的应用统计专业硕士培养模式探讨
2014-06-11庞镭
庞镭
摘 要:统计学作为收集、整理、分析和解释数据的方法论和科学,统计学专业作为培养数据分析人才的学科,正在经受大数据浪潮的冲击。如何主动应对大数据时代带来的机遇与挑战,推动统计学教育和统计学人才培养的改革和发展,服务大数据行业、产业发展大局,是当前统计教育工作的重要课题。
关键词:大数据 统计专业 核心
中图分类号:G632 文献标识码:A 文章编号:1674-2117(2014)10-0008-02
1 大数据的统计涵义
通常来说,凡是数据量超过一定大小,导致常规软件无法在一个可接受的时间范围内完成对其进行抓取、管理和处理工作的数据即可称为大数据。业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征:数据体量巨大、数据类型繁多、价值密度低、处理速度快。
大数据潮流让我们获得了海量的数据,数据已经成为相关行业创造价值的重要资源。因此,许多IT企业和互联网企业都已将业务范围延伸至大数据产业,探索大数据驱动的业务模式。2012年,美国政府投资2亿美元启动的“大数据研究和发展计划”,更是将大数据的研究上升到国家战略层面。然而,大数据的真正意义不在于数据量的巨大,而在于对数据信息进行专业化的处理,核心是对数据进行分析。面对大数据,越来越多的领域都开始运用数学特别是统计学的工具,挖掘大数据中真正蕴藏的价值。正如西内启在《看穿一切数字的统计学》书中所指出的,“从数据中得出有意义的结果,关键在于控制和减少误差,得出因果关系,单纯收集数据并加以全部量化分析在很多情况下会得出谬误结果,”而科学的统计学方法是得出因果关系的最佳方法。
从统计学角度看,一方面,大数据具有类型繁多、结构复杂、体量巨大等特点,海量数据以分布式方式进行存储,特别是图片、音频、视频等非结构化数据的广泛存在,传统的统计方法和统计分析工具已无法满足大数据分析的需要,亟需统计方法的革新。另一方面,数据分析结果需要用生动、直观、容易被接受的方式展示给读者,可视化分析能够直观地呈现大数据的特点,阐释数据与数据之间的联系。因此,统计学要挺立大数据潮头,创新统计分析工具、可视化分析方法,以大数据的挖掘和应用为核心,将传统文本、图像的统计、分析向数据分析转变,以适应大数据时代的发展及其对统计学带来的挑战。
2 大数据时代统计学教育面临的挑战与应对
据互联网数据中心(Internet Data Center)预测,中国大数据技术与服务市场将会从2011年的7760万美元快速增长到2016年的6.16亿美元,而据业界专家估算,中国大数据市场的人才需求量至少为100万人,其中统计人才、技术更是捉襟见肘。传统数据收集和分析技术的知识结构已不能满足大数据时代对“数据科学家”的要求,多家企业在面对大数据发展时遭遇人才瓶颈。大数据相关人才供给不足将会成为影响大数据市场发展的一个重要因素。
当前,全世界范围内已有数百个高校开设了大数据分析专业。卡内基梅隆大学和新泽西州立大学在培养目标和课程设置上项目设置偏重于计算机方向。课程设置偏重统计学与运筹学(包括决策科学)的典型学校有田纳西大学和约克大学。2013年,北京航空航天大学与慧科教育合作开办了国内首个“大数据技术与应用”软件工程硕士项目研究生班,这是目前国内唯一一个培养大数据行业专业型人才的项目,但其培养目标、知识体系是面向计算机领域,而立足统计学基础的大数据分析人才培养项目,在国内可谓是凤毛麟角。
知者随事而制。高等院校统计学专业要通过有效利用和整合人才培养资源,承担大学人才培养的责任,驾驭大数据的浪潮,占领大数据发展人才培养的制高点,体现高等院校向社会、企业提供智力支撑,输送企业亟需的复合型、实用性大数据分析人才的载体作用,确保产业科学、持续、高速的发展。一是教育资源的整合,走在前列的首都经济贸易大学、北京大学、中国人民大学、中国科学院大学、中央财经大学五所应用统计专业硕士培养单位在北京成立了“中国大数据教育协同创新体”,在高校之间实现学科融合、优势互补、强强联合,通过共享优质资源平台、共同建立课程体系、共同建设案例资源库、联合搭建实践实训平台等多种形式,创新人才培养体制机制。二是高等院校教育资源与业界资源的整合,通过与国有超大型企业、互联网翘楚的协同培养,立足应用统计专业硕士教育,建立人才培养基地,进行协同创新,探索构建应用统计(大数据分析)专业硕士人才协同培养模式。以缓解当前大数据人才供需矛盾为目的,建立“校校协同、校企协同、院系协同”的大数据分析方向人才协同培养模式,最终实现协同培养“数据科学家”的目标。[5]
3 面向大数据分析方向的应用统计专业硕士培养模式的构建
本研究认为,可以将大数据分析及相关的案例教学模式融入应用统计专业硕士学位研究生的培养过程,进而打破统计学传统的以阐述统计理论、公式推导、数学计算为主的教学模式。以情境浸润为基础,为学生呈现统计学在大数据领域应用为核心的教学模式,可以培养学生对大数据的挖掘、整合、分析价值的能力,以期更好、更快地适应企业对数据分析师、数据科学家的需求。
3.1 科学构建课程体系,突出大数据分析特点
大数据具有强烈的行业特点,在充分借鉴国外大学成功经验的基础上,大数据分析专业硕士的课程设置,强化数据分析能力和数据挖掘能力,注重上述技术在金融等领域的应用。必修课在讲授统计基础理论(描述、多元、时序、空间、可视化等)课程的基础上,为增强学生的大规模分布式计算技能,引入主流的大数据计算平台,如Hadoop分布式平台、MapReduce并行编程算法。与此同时,为提高学生动手能力,构建数据模型思维,开设《大数据分析案例》等多门课程。选修课方面,考虑到学生二次开发的需要,设置大数据开发基础课程,如C++、Java等。为突出应用统计专业硕士侧重应用的特点,开设面向数据的编程语言,如R、SAS、Python等课程。这些课程模块的设置并非体现某一学科知识的纵深发展,而是将相关学科的知识融合,有利于突出大数据分析的特点。endprint
3.2 创新教学培养模式,注重培用结合
以“编组”方式开展教学活动。授课教师和学生均采用团队编组模式,多名教师协同工作,共同完成一门课程的授课任务。打破原有学科思维、教材的束缚。采用导师指导与集体培养相结合的方式。教师不可照搬旧有的教学大纲、课程内容,要学习和熟悉大数据相关知识体系与技术新进展,充分结合大数据分析需求和实际案例,使课程内容紧贴实际需求,注重培养学生对模型的理解,对数据的想象力,真正实现学以致用、培用结合。
采取“订制化”培养模式,突出培养与应用相结合的特点,力争做到人、岗的高度匹配。“订制化”培养模式打破了目前应用统计专业硕士统一培养、与市场需求脱节的模式壁垒,教学实践以市场需求为导向,依照企业的岗位标准、用人要求,强调以岗位需求制定培养方案,更好地满足用人单位对大数据分析人才的需求。
3.3 开展校企协同培养,构建问题导向、项目牵引的实践教学模式
根据国务院学位委员会的规定,应用统计学专业硕士学位研究生教育的目的是培养具有良好的统计学背景,系统掌握数据采集、处理、分析和开发的知识与技能,具备熟练应用计算机处理和分析数据的能力,能够并适应行业或职业实际工作需要的应用型高层次人才。因此,要摒弃普遍存在的重理论轻实践、重知识轻技能的教学方式。
协同创新培养在实践教学中建立了以问题为导向,以项目为牵引的运作机制,强调实践教学内容的呈现方式要面向企业需求,让学生参与到企业的项目运行过程中,引导学生建立业务建模能力,培养学生的数据资源整合能力,激发学生参与项目的积极性和自觉性。学生不拘泥于学校的实验实训基地和各类实验室,在第二学年中安排一定时间走出校门,进入到企业的实际环境中,参与企业的项目组织、实施过程,在实践过程中提升自我认知能力,在实践过程应用知识和理论研究实际问题的能力,培养和锻炼数据资源整合能力、沟通协调能力、IT支撑能力、业务建模能力,真正实现面向能力培养的目的。指导教师方面,在案例教学和实习阶段引进业务素质高、项目经验丰富、对大数据发展有敏锐洞察力的企业高级数据分析人员,指导学生在实习实践中提出问题、建立模型、解决问题的能力。
4 结语
应用统计(大数据分析)专业硕士人才协同培养模式,是一项可持续发展的应用统计专业硕士人才培养的新模式,是专业硕士教学实践的创新举措,也是在全国率先建立起来的立足统计学,在大数据分析人才层面建立的校校协同、校企系统办学体。体现了面向能力培养、面向社会需求培养、面向人才价值培养的“三个面向”的培养目标,着重培养学生分析数据、处理数据、展示数据的能力,对于培养“高层次、实用性、复合型、国际化”大数据分析人才意义重大,同时也是顺应大数据技术革命的浪潮,必将对大数据等新兴技术产业的发展注入活力。
(首都经济贸易大学,北京 100070)
参考文献:
[1]刘军.Hodoop大数据处理[M].人民邮电出版社,2013.
[2]大数据的四个典型特征[N].中国电子报、电子信息产业网,2012(12).
[3]CCF大数据专家委员会.2014年大数据发展趋势预测[J].中国计算机学会通讯,2014(1):32-36.
[4]统计学帮你驾驭大数据[N].中国证劵报,2013(11).
[5]吴元欣,王存文,丁一刚.化工专业联盟人才协同培养模式的构建与实践[J].化工高等教育,2013(1):1-4.endprint