APP下载

超塑成形/扩散连接技术在航空航天上的应用

2014-04-22张向辉

科技视界 2014年22期
关键词:结构件航空航天钛合金

张向辉

(中国空空导弹研究院,河南 洛阳 471009)

0 引言

随着科学技术的进步,飞行器的性能越来越高,对结构件的各项要求也越来越高,采用传统的铆接、焊接方式制造的装配件已不能满足总体的需要。20世纪70年代问世的超塑成形/扩散连接技术(SPF/DB),能够大幅减轻结构件重量,降低成本,具有较高的强度和刚性,并且通过减少零件和连接环节提高系统的可靠性,从而广泛应用于航空航天领域。本文主要介绍了超塑成形/扩散连接技术(SPF/DB)的原理、特点以及在航空航天领域的应用。

1 超塑成形/扩散连接技术原理

1.1 超塑成形/扩散连接的概念

1.1.1 超塑性(SPF)

超塑性通常是指材料在拉伸条件下表现出异常高的延伸率也不产生缩颈与断裂现象。当延伸率大于100%时,即可称为超塑性。按照实现超塑性的条件和变形特点的不同,目前一般将超塑性分为以下几类:组织超塑性、相变超塑性和其他超塑性。实际生产中应用最广泛的是组织超塑性。获取这种超塑性一般要求材料具有均匀、细小的等轴晶粒和较好的热稳定性。

1.1.2 扩散连接(DB)

扩散连接是把2个或2个以上的固相材料(包括中间层材料)紧压在一起,置于真空或保护气氛中加热至母材熔点以下温度,对其施加压力使连接界面微观凸凹不平处产生微观塑性变形达到紧密接触,再经保温、原子相互扩散而形成牢固的冶金结合的一种连接方法。通常把扩散连接分为3个阶段(见图1):第一阶段为塑性变形使连接界面接触。在金属紧密接触后,原子开始相互扩散并交换电子,形成金属键连接。第二阶段为扩散、界面迁移和孔洞消失。连接界面的晶粒生长或再结晶以及晶界迁移,使金属键连接变成牢固的冶金连接。最后阶段为界面和孔洞消失。在这一阶段中主要是体积扩散,速度比较慢,通常需要几十分钟到几十小时才能使晶粒穿过界面生长,原始界面完全消失。

图1 扩散连接的三阶段模形

1.1.3 超塑成形/扩散连接(SPF/DB)

SPF/DB是一种把超塑成形与扩散连接相结合用于制造高精度大形零件的近无余量加工方法。当材料的超塑成形温度与该材料的扩散连接温度相近时,可以在1次加热、加压过程中完成超塑成形和扩散连接2道工序,从而制造出局部加强或整体加强的结构件以及构形复杂的整体结构件。如钛合金的超塑成形温度为850~970℃,扩散连接温度为870~1280℃,由于在超塑成形温度下也可进行扩散连接,因此有可能把这2种工艺结合,在1次加热、加压过程中完成超塑成形和扩散连接2道工序。这种只需1次加热、加压过程的SPF/DB工艺常见于板料的吹胀成形和扩散连接。体积成形(如超塑性模锻)与扩散连接相结合的SPF/DB工艺往往需要将超塑成形和扩散连接分开进行,先超塑成形后再扩散连接或者先扩散连接后再超塑成形,视具体工艺情况而定。

1.2 超塑成形/扩散连接的技术原理

超塑成形工艺按成形介质可分为气压成形、液压成形、无模成形、无模拉拔;按原始坯料形式可以分为体积成形、板材成形、管材成形、杯突成形等等。其中,在航空航天领域中,应用最为广泛的超塑成形方法是板材气压成形,也称吹塑成形。吹塑成形是一种用低能、低压获得大变形量的板料成形技术。通过设计制造专用模具,在模具与板料中间形成一个封闭的压力空间,板料被加热到超塑性温度后,在气体作用下,坯料产生超塑性变形,逐渐向模具形面靠近,直至同模具完全贴合形成预定形状。具备超塑性的材料包括钛合金、铝合金、镁合金、高温合金、锌铝合金、铝锂合金等。目前超塑成形技术最广泛的应用是与扩散连接技术组合而成的超塑成形/扩散连接组合工艺技术(SPF/DB),利用金属材料在一个温度区间内兼具超塑性与扩散连接性的特点,一次成形出带有空间夹层结构的整体构件。按照成形构件初始毛坯数量不同可以分为单层、两层、三层及四层结构形式(见图2)。

图2 超塑成形/扩散连接的基本形式

用于SPF/DB组合工艺的扩散连接方法主要有三种:小变形固态扩散连接、过渡液相扩散连接和大变形/有限扩散连接。在扩散连接过程中应采用惰性保护气体或真空,以防止氧化层的形成和生长。对于常使用的钛合金而言,超塑成形和扩散连接技术条件和工艺参数具有兼容性,因此有可能在构件研制中把两种工艺组合在一个温度循环中,同时实现成形和连接。在采用SPF/DB组合工艺进行多层结构的生产中,可以先扩散连接后超塑成形(DB/SPF),也可以先超塑成形后扩散连接(SPF/DB)。

DB/SPF工艺过程中,构件的芯板结构由板面的止焊剂图案而定,构件生产可在一次加热循环中完成,也可分为两道工序。一道工序的特点是零件在生产过程中无需开模。两道工序则有以下优点:扩散连接可用气压或机械压力,也可选用其他连接技术;超塑成形前可对扩散连接质量进行检测;扩散连接和超塑成形的温度可各自优化,气压更易控制;可同时连接几个部件,提高加工经济性。

SPF/DB工艺过程中,首先根据构件加强要求形式涂止焊剂或焊接,然后外层板和芯板沿周边扩散连接并气压成形,最后在超塑温度和压力条件下,完成芯板之间以及芯板和外层板之间的扩散连接。该工艺的主要问题是辅助扩散连接比主要扩散连接困难,扩散连接只能靠气压提供压力,另外,氩气中的杂质和经过超塑成形后脱落的止焊剂容易导致扩散连接连接质量下降。

2 超塑成形/扩散连接的优缺点

超塑成形/扩散连接技术的优点:

1)可以使以往由许多零件经机械连接或焊接组装在一起的大构件成形为大型整体结构件,极大的减少了零件和工装数量,缩短了制造周期,降低了制造成本;

2)可以为设计人员提供更大的自由度,设计出更合理的结构,进一步提高结构承载效率,减轻结构件质量;

3)采用这种技术制造的结构件整体性好,材料在扩散连接后的界面完全消失,使整个结构成为一个整体,极大的提高了结构的抗疲劳和抗腐蚀特性;

4)材料在超塑成形过程中可承受很大的变形而不破裂,所以可成形很复杂的结构件,这是用常规的冷成形方法根本做不到或需多次成形方能实现的。

超塑成形/扩散连接除了具有以上优点,同时也存在以下的几点不足:

1)对零件待焊表面的制备和装配的要求较高;

2)焊接热循环时间长,生产率低。在某些情况下会产生一些副作用,例如母材晶粒可能过度长大;

3)设备一次性投资较大,而且焊接工件的尺寸受到设备的限制;

4)对焊缝的质量尚无可靠的无损检测手段。

3 超塑成形/扩散连接技术的研究方向

超塑成形/扩散连接技术虽然已进入工程应用阶段,并已展示出巨大的技术经济效益,但钛合金超塑性应用领域仍以航空航天等军工业为主,与其他新兴技术一样,仍然需要不断开发其在其他工业领域中的应用。近年来,国内外超塑成形/扩散连接研究发展趋势主要由以下几个方面。

3.1 超塑成形结构要素研究

主要针对超塑成形技术中存在的两个主要问题,即压力-时间加载曲线和实际最小厚度预测进行研究。利用塑形力学和超塑性力学的基本原理对载荷、应力、应变、时间和应变速率等进行分析,并通过五种结构要素进行验证和修正,通过理论曲线与试验结果相比较,为SPF技术提供了一定的理论依据和合理的压力-时间加载曲线设计方法。

3.2 典型构件制造技术研究

主要针对飞机结构的几种结构形式,研究其高温、高温密封;进气方法;脱模工艺;曲线毛坯制备方法;典型构件的制造方法及工艺流程、工艺参数的选用;隔离剂图形的设计制备等。这些制造方法的研究,能够为典型构件的研制提供一整套可选用的方法,并为设计部门提供了重要的设计依据。

3.3 超塑成形/扩散连接前后材料的力学性能变化研究

主要包括常温性能、高温强度、疲劳性能等。为设计部门提供重要承力构件的设计依据,并通过此研究向材料生产厂家提出合理的订货技术要求,为在我国制定生产超塑成形专用材料的正式标准提供有价值的参考。经过超塑成形/扩散连接热循环后的板材,由于晶粒长大及氢氧含量变化和材料表面状态变化等原因,使其力学性能发生变化。因此,在工艺过程中严格控制加热温度、时间,合理的设计加载曲线,采取必要的表面保护措施是非常重要的。

3.4 超塑性材料研究

增加超塑性材料品种,开发现有材料的超塑性。如Ti基复合材料、金属间化合物等材料超塑性的开发;纳米材料超塑性的实用化研究和高应变速率超塑性合金的研究。

4 超塑成形/扩散连接技术在航空航天上的应用

从20世纪60年代开始,受到先进飞行器的刺激和推动,国外航空工业率先开展超塑成形技术研究。70年代早期,美国洛克威尔公司首先将超塑成形技术应用于飞机结构件制造中,使钛合金制造工艺发生了技术变革。随后,欧美将钛合金SPF、SPF/DB技术列为重点研究项目,促使超塑成形整体结构在飞机、发动机、导弹、卫星、舰艇等工业领域的应用不断扩大,显示出旺盛的生命力,在已获得的工程应用领域内产生了巨大的技术经济效益:F-15E后机身结构采用SPF/DB整体结构后,减少了726个零部,并取消了10000多个紧固件;联合战斗机(JSF)的后缘襟翼和副翼、F-22后机身隔热板等重要结构均采用了钛合金超塑性成形/扩散连接的整体结构。

在民用飞机结构制造方面,据统计:飞机结构重量中8%-10%以上的结构可以采用超塑成形整体结构。这些应用包括稳定性设计结构(肋、梁、框架、承压支柱)、复杂的多板式部件(壁板、固定托架和支撑架)、复杂壳体(管道、箱体、容器)气动面、检修口盖/舱门、发动机舱部件、发动机转子零件、热空气管道以及装饰壁板和生活设施等。欧洲空中客车公司的A310、A320、A330/340制造中,采用超塑成形/扩散连接的钛合金两层超塑整体结构替代铝合金铆接结构后,取得了减重46%的效果;波音777发动机气动舱门采用了两层超塑整体结构,用以替代原来的焊接结构,原来结构23个零件需要70h的装配时间,采用钛合金超塑两层整体结构后减少到2个零件,装配时间仅需6h,同时减重1.4kg。

在发动机领域,超塑成形/扩散连接组合工艺已经成为重要结构制造的关键工艺。作为大涵道比涡扇发动机的关键部件之一,英国罗·罗公司率先采用SPF/DB技术研制宽弦无凸肩空心风扇叶片,其特点是利用桁架结构取代蜂窝结构,使叶片重量减轻了15%,大大改善了叶片的气动特性,先后将26片钛合金空心宽弦无凸肩风扇叶片应用到遄达700和遄达800发动机上。最近,空客A380飞机使用的遄达900发动机,其一级风扇直径为295cm,整个风扇部件包括24片采用弯掠设计的空心钛合金风扇叶片,大大改善了叶片的气动特性,在抗外来物损伤方面比早期的风扇叶片效率更高。

此外,近年来随着导弹轻量化、高强度要求的进一步升级,钛合金超塑成形/扩散连接整体结构制造技术引起了高度的关注。导弹弹体结构、气动面采用钛合金SPF/DB技术工艺后可实现无余量结构制造,省去了大量机加工时间、紧固件和装配作业的时间。更为重要的是,SPF/DB工艺有利于整体成形出具有薄壁空心、形状复杂、光滑表面和气动外形流畅的导弹弹体结构。另外,采用钛合金超塑成形/扩散连接技术制造的薄壁夹层空心结构还能有效实现埋入式结构的功能,在一体化制造方面潜力巨大。

5 结论

超塑成形/扩散连接技术应用表明:尽管材料(钛合金)成本高,但成本效益和重量减轻对航空航天的吸引力更大;超塑成形/扩散连接技术在国外已广泛应用于飞行器零部件的生产中,并开始批量生产;我国超塑成形/扩散连接技术在上世纪70开始研究,不仅应用于飞机的零部件,而且还在航空发动机、导弹结构上广泛应用,有效的减轻重量,降低制造成本,提高系统可靠性和耐久性,为促进航空航天技术进步做出了贡献。

[1]郭健,杨建民,刘振岗.扩散焊技术的应用[J].学科发展,2004.

[2]朱平.一种新形的扩散焊连接技术[J].制导与引信,1999.

[3]李志强,郭和平,等.超塑成形/扩散连接技术的应用进展和发展趋势[J].航空制造技术,2010.

[4]李志强,郭和平.超塑成形/扩散连接技术在航空航天工业中的应用[C]//2004航空航天焊接国际论坛论文集.2004.

猜你喜欢

结构件航空航天钛合金
第十五届航空航天月桂奖
第十五届航空航天月桂奖
变压器结构件过热的研究和处理
“神的金属”钛合金SHINE YOUR LIFE
KWSP为Uniti One提供碳纤维复材底盘结构件
一种航空薄壁结构件的加工应用
钛合金板锻造的工艺实践
钛合金结构件变进给工艺分析
医用钛合金的研究与应用
一飞冲天——中国航空航天史