光声层析成像技术的研究进展
2014-04-21池妍谭治良
池妍+谭治良
摘 要 光声层析成像技术是一种新兴的医学成像技术,具有高分辨率、高对比度、高穿透深度的优点。文章简要介绍光声层析成像技术的原理,并报道基于单聚焦换能器扫描的层析成像技术和基于多探元超声探测方式的层析成像技术,指出该技术在医学检测上具有重要的应用前景。
关键词 光声层析成像技术;高分辨率;高穿透深度
中图分类号:TP3 文献标识码:A 文章编号:1671-7597(2014)05-0002-02
光声成像技术是基于光声效应的一种成像技术。当物质受到短脉冲激光或者周期性的强度调制的光照时,物质内部将会产生周期的温度变化,温度变化使这部分物质及其邻近介质产生周期性的涨缩,从而产生声信号,这种声信号被称为光声信号。光声成像技术具有高分辨率、高对比度、高穿透深度的优点,主要包括光声内窥镜、光声显微成像、光声层析成像等。本文阐述了光声层析成像技术的原理,并报道基于单聚焦换能器扫描的层析成像技术和基于多探元超声探测方式的层析成像技术。
1 光声层析成像技术原理
光声层析成像技术利用大照射面积的脉冲激光作为照射源,当激光照射在样品时,由于样品介质的散射作用,使到样品内部目标组织被均匀照射,所激发超声信号传播到组织表面的时候用带扫描机制的超声探测器或者超声探测器阵列进行探测,直接或者通过特定的算法进行图像重构。由于样品内部不同深度位置的声信号到达样品表面的超声信号存在时间差异,因此,利用时间分辨技术可以获得不同层析面的光声信号,从而获得组织的三维光声图像。
2 光声层析成像技术
2.1 基于单聚焦换能器扫描的层析成像技术
在光声层析成像技术的应用领域最简单的探测方式就是采用单探元的传感方式来进行探测,利用单个聚焦换能器横向扫描探测外部的光声信号就可以获得组织内部某一层析层面的光声图像的一种方法。该想法最早由Kruger等于1994年提出,并于2004年被Kolkman等用一个PVDF材料制造的双环换能器实现了聚焦探测光声信号。
2.2 基于多探元超声探测方式的层析成像技术
逐点扫描的成像方式存在一个严重的问题,就是成像速度过慢,因此很多小组相继采用了多元探测的方式,并结合一定算法实现了光声层析成像。从探元分布情况上分,多探元的超声探测系统可以分为球形、圆柱形以及平面形多探元分布机制。球形和圆柱形多元超声探测系统需要接触整个目标样品的各个方向,因此只能被限制在对乳房以及小动物(如老鼠)等体积较小的样品进行光声成像。而平面形扫描的多元超声探测系统应用范围更广,尤其在浅表层(譬如皮肤)的探测更有优势。面状扫描的光声成像方式有很多种,其中比较典型的有以下几种。
2.2.1 多元探测器相控聚焦光声成像法
Da Xing等人提出利用320个换能器阵元组成一个换能器线阵,结合相控聚焦重构算法,如图1所示,用电子扫描代替机械扫描,然后对阵列探测器每个探头测得的信号依据该探头到探测点的距离作一个时间延时,再根据信号传输距离及探测器作一幅值权重,然后求和便可得到被测点的光声信号。由于无须旋转探测器,从而极大地缩短了成像时间,使成像时间从几十分钟缩短到几秒,但由于受多元探测器的像素和间距的限制(基于相控聚焦算法的图像分辨率取决于多元探测器的像素和间距),其横向分辨率可以达到几百微米,但无法用于细胞水平的光声成像。
图1 相控聚焦原理图
图2 法布里-波罗薄膜探测法
2.2.2 以法布里-波罗(Fabry-Perot,简称FP)高分子薄膜作为探测器探测光声信号
如图2所示,其原理利用FP薄膜前后表面镀上高反射率的银膜或铝膜,超声信号会引起高分子薄膜的厚度发生空间的变化,而两个反射面反射的干涉光强变化也随着薄膜厚度变化而变化,然后对探测光进行解调,就能获取超声的二维空间分布。Beard P.C.等用此方法获得了手上皮肤下面4 mm厚度不同层面的微细血管的三维光声图像。
2.2.3 声透镜成像法
从傅里叶成像理论出发,利用具有空间傅里叶变换性质的声透镜,可对光声信号进行二维成像,这类似于光学透镜的成像原理,通过探测声透镜像面上的声压分布情况便可重建声源的分布情况,如图3所示。M.Fenz等以及Zhilie Tang等都通过了声透镜对获得了光声图像,前者通过一个光学暗场成像系统直接用CCD拍摄到像面的光声压分布,最后通过计算机还原物面声源分布;而后者则通过扫描一维线阵获取像面光声图像。
图3 声透镜层析成像法
3 结束语
光声成像技术的信息载体是声信号,它的传输与组织的散射特性没有直接关系。因此光声成像技术的成像深度远远超过激光扫描激光显微镜、双光子荧光显微镜和OCT等三维光学成像技术。因此,光声层析成像技术在探测组织病变等医学领域中有巨大的应用价值。
参考文献
[1]殷庆瑞.光声光热技术及其应用[M].北京:科学出版社,1991.
[2]Kruger R. A. , Liu P.Y.. Ultrasound: Pulse production and detection in 0.5% Liposyn [J] Med. Phys., 1994, 21:1179.
[3]Kolkman G. M., Hondebrink E.,SteenbergenW.In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor[J]. IEEE J. Select. Top. Quan. Elect., 2003, 9: 343.
[4]Yang D. W., Xing D., Tan Y., Gu H. M., Yang S. H.. Integrative prototype B-scan , photoacoustic tomography system based on a novel hybridized scanning head [J], Appl. Phys. Lett., 2006, 88, 174101-3endprint
[5]Zeng Yaguang, Xing Da, Wang Yi et al. Photoacoustic and ultrasonic co-image with a linear transducer array [J]. Opt. Lett., 2004, 29: 1760-1762
[6]Yin B. Z., Xing D., Wang Y. et al.. Fast photoacoustic imaging system based on 320-element linear transducer array [J]. Phys. Med. Biol., 2004, 49: 1339-1346.
[7]Wang Y., Xing D., Zeng Y. G.. Photoacoustic imaging with deconvolution algorithm[J]. Phys. Med. Biol., 2004, 49: 3117-3124
[8]Zhang.E., Laufer. J., Beard.P.C. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry·Perot polymer film ultrasound sensor for high-res-olution three-dimensional imaging of biological tissues [J]. Appl. Opt. , 2008, 47: 561-577.
[9]Zhang, E. Z., Laufer, J. G., Pedley, R. B., Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatom [J]. Phys. Med. Biol. ,2009 54: 1035-1046.
[10]Beard. P. C., Perennes, F., Mills. T. N. Transduction mechanisms of the Fabry·Perot polymer film sensing concept for wideband ultrasound detection [J]. IEEE Trans. Ultrason. Ferroelect. Freq. Cont. ,1999, 46: 1575-1582.
[11]Niederhauser J. J., Jaeger M., and Frenz M.. Real-time three-dimensional optoacoustic imaging using an acoustic lens system [J]. Appl. Phys. Lett. , 2004, 85(5): 846-848.
[12]He Yongheng, Tang, Zhilie, Chen Zhanxu, Wan Wei and Li Jianghua. A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system [J], Phys. Med. Bio.51, 2671-2680,
[13]Chen Z. X., Tang Z. L., Wan W.. Photoacoustic tomography imaging based on a 4f acoustic lens imaging system [J]. Opt. Express, 2007 15: 4966-4976.
[14]Wei Y. D., Tang Z. L., Zhang H. C., He Y. H., and Liu H. F.. Photoacoustic tomography imaging using a 4f acoustic lens and peak-hold technology [J]. Opt. Express,2008, 16: 5314-5319.
[15]Chen Xian, Tang Zhilie, He Yongheng, Liu Haifeng, Wei Yadong, and Wu Yongbo, Simultaneous photoacoustic imaging technique using an acoustic imaging lens [J] Journal of Biomedical Optics, 2009 Vol. 14(3): 030511-1-3.endprint
[5]Zeng Yaguang, Xing Da, Wang Yi et al. Photoacoustic and ultrasonic co-image with a linear transducer array [J]. Opt. Lett., 2004, 29: 1760-1762
[6]Yin B. Z., Xing D., Wang Y. et al.. Fast photoacoustic imaging system based on 320-element linear transducer array [J]. Phys. Med. Biol., 2004, 49: 1339-1346.
[7]Wang Y., Xing D., Zeng Y. G.. Photoacoustic imaging with deconvolution algorithm[J]. Phys. Med. Biol., 2004, 49: 3117-3124
[8]Zhang.E., Laufer. J., Beard.P.C. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry·Perot polymer film ultrasound sensor for high-res-olution three-dimensional imaging of biological tissues [J]. Appl. Opt. , 2008, 47: 561-577.
[9]Zhang, E. Z., Laufer, J. G., Pedley, R. B., Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatom [J]. Phys. Med. Biol. ,2009 54: 1035-1046.
[10]Beard. P. C., Perennes, F., Mills. T. N. Transduction mechanisms of the Fabry·Perot polymer film sensing concept for wideband ultrasound detection [J]. IEEE Trans. Ultrason. Ferroelect. Freq. Cont. ,1999, 46: 1575-1582.
[11]Niederhauser J. J., Jaeger M., and Frenz M.. Real-time three-dimensional optoacoustic imaging using an acoustic lens system [J]. Appl. Phys. Lett. , 2004, 85(5): 846-848.
[12]He Yongheng, Tang, Zhilie, Chen Zhanxu, Wan Wei and Li Jianghua. A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system [J], Phys. Med. Bio.51, 2671-2680,
[13]Chen Z. X., Tang Z. L., Wan W.. Photoacoustic tomography imaging based on a 4f acoustic lens imaging system [J]. Opt. Express, 2007 15: 4966-4976.
[14]Wei Y. D., Tang Z. L., Zhang H. C., He Y. H., and Liu H. F.. Photoacoustic tomography imaging using a 4f acoustic lens and peak-hold technology [J]. Opt. Express,2008, 16: 5314-5319.
[15]Chen Xian, Tang Zhilie, He Yongheng, Liu Haifeng, Wei Yadong, and Wu Yongbo, Simultaneous photoacoustic imaging technique using an acoustic imaging lens [J] Journal of Biomedical Optics, 2009 Vol. 14(3): 030511-1-3.endprint
[5]Zeng Yaguang, Xing Da, Wang Yi et al. Photoacoustic and ultrasonic co-image with a linear transducer array [J]. Opt. Lett., 2004, 29: 1760-1762
[6]Yin B. Z., Xing D., Wang Y. et al.. Fast photoacoustic imaging system based on 320-element linear transducer array [J]. Phys. Med. Biol., 2004, 49: 1339-1346.
[7]Wang Y., Xing D., Zeng Y. G.. Photoacoustic imaging with deconvolution algorithm[J]. Phys. Med. Biol., 2004, 49: 3117-3124
[8]Zhang.E., Laufer. J., Beard.P.C. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry·Perot polymer film ultrasound sensor for high-res-olution three-dimensional imaging of biological tissues [J]. Appl. Opt. , 2008, 47: 561-577.
[9]Zhang, E. Z., Laufer, J. G., Pedley, R. B., Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatom [J]. Phys. Med. Biol. ,2009 54: 1035-1046.
[10]Beard. P. C., Perennes, F., Mills. T. N. Transduction mechanisms of the Fabry·Perot polymer film sensing concept for wideband ultrasound detection [J]. IEEE Trans. Ultrason. Ferroelect. Freq. Cont. ,1999, 46: 1575-1582.
[11]Niederhauser J. J., Jaeger M., and Frenz M.. Real-time three-dimensional optoacoustic imaging using an acoustic lens system [J]. Appl. Phys. Lett. , 2004, 85(5): 846-848.
[12]He Yongheng, Tang, Zhilie, Chen Zhanxu, Wan Wei and Li Jianghua. A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system [J], Phys. Med. Bio.51, 2671-2680,
[13]Chen Z. X., Tang Z. L., Wan W.. Photoacoustic tomography imaging based on a 4f acoustic lens imaging system [J]. Opt. Express, 2007 15: 4966-4976.
[14]Wei Y. D., Tang Z. L., Zhang H. C., He Y. H., and Liu H. F.. Photoacoustic tomography imaging using a 4f acoustic lens and peak-hold technology [J]. Opt. Express,2008, 16: 5314-5319.
[15]Chen Xian, Tang Zhilie, He Yongheng, Liu Haifeng, Wei Yadong, and Wu Yongbo, Simultaneous photoacoustic imaging technique using an acoustic imaging lens [J] Journal of Biomedical Optics, 2009 Vol. 14(3): 030511-1-3.endprint