生物质快速热解技术研究进展与趋势
2014-04-02李赛
李赛
摘 要:文章综述了国内外快速热解技术的发展现状,并提出了未来快速热解研究方面的主要方向和发展趋势。
关键词:生物质能源;快速热解;研究趋势
1 引言
生物质能源是未来可持续发展能源系统的重要组成部分,是未来化石燃料的替代品之一,其高效转换和洁净利用日益受到全世界的关注。
目前,国外已经研究开发了快速热解技术,即生物质瞬间热解制取液体燃料油,是一种很有开发前景的生物质应用技术。作为一项资源高效利用的新技术,生物质快速热解技术逐渐受到重视,已成为国内外众多学者研究的热点课题。
2 国外发展现状
国外对于生物质的快速热解做了大量工作,特别是欧、美等发达国家,从20世纪70年代首次进行生物质快速热解实验以来,已经形成较完备的技术设备和工业化系统。
为了方便热解液化方面的学术交流和技术合作,欧洲在1995年和2001年分别成立了PyNE组织(Pyrolysis Network for Europe) 和GasNet (European Biomass Gasification Network)组织,前者拥有18个成员国,后者现拥有20个成员国以及8家工业单位成员。这两大组织在快速热解技术的开发以及生物油的利用方面做了大量富有成效的工作。
国际能源署(IEA)组织了加拿大、芬兰、意大利、瑞典、英国及美国的10余个研究小组进行了10余年的研究工作,重点对这一过程发展的潜力、技术、经济可行性以及参与国之间的技术交流进行了协调,并在所发表的报告中得出了十分乐观的结论[1]。
荷兰Twente于1989年由Van Swaaij和W Prins等人提出并开始研制旋转锥式反应工艺(Twente rotating cone process),到1995年取得初步成功[2,3]。
加拿大Ensyn工程师协会研制的循环流化床工艺在芬兰安装了20kg/h的小规模装置,在意大利的Bastardo建成了650kg/h规模的示范装置[4,5]。
加拿大Waterloo(滑铁卢)大学在20世纪80年代开始开发流化床热解技术,目前加拿大达茂公司的设备日处理能力达200t [3,5]。
Christian Roy博士和他的研究小组1981年起在Laval大学进行真空移动床的工艺研究,2000年被Pyrovac国际公司在加拿大的Jonquiere建立规模为3.5t/h的示范工厂[6,7]。
美国Georgia(佐治亚)工学院1980年开发了引流床反应器,但直到1989年左右才成功运行,可得到58%的液体产物。
3 国内发展现状
国内在生物质快速热解技术方面的研究工作起步较晚,并不成熟。但相关研究机构正在从事方面研究工作,也开发了多种反应器。
浙江大学于20世纪90年代中期,在国内率先开展了相关的原理性试验研究,使用GC-MS联用技术定量分析了生物油的主要组分。山东工程学院开发了等离子体快速加热生物质液化技术,1999年6月首次在国内制出了生物油并进行了成分分析。中国科学院广州能源研究所(GIEC)也自主研制了生物质循环流化床液化小型装置,可取得63%的液体产率。
表2列举了近年来我国国内研究的几种主要反应器。
可见,流化床反应器运行简单、结构紧凑、容易放大,已经得到越来越多的重视。
4 发展趋势
目前尚待解决的问题有以下几点:
机理研究需要进一步深入。目前被用于快速热解的生物质原料已有几十种,寻求合适的原料对于提高产物的品质至关重要。
液体的收集和工业放大方面仍需改进工艺。
降低成本,增加生物质能的竞争力。我国劳动力和原料的价格低廉、产业化生产基建投资是最大的费用,要在系统设计和设备的制造上有所创新以降低整个生产的投资。
在快速热解产物的分析和精制方面,仍需大量的探索,重点研发生物油的精制工艺,提高生物油的品位,使其能够真正成为石油的替代品。
可见,开发和改进快速热解技术的主要方向应该是提高生物质的转化率,提升生物油品质,优化反应系统的整体效率及开发适于其特殊性质的新的应用领域。
5 结束语
生物质能源是备受世界关注的可再生能源,已成为21世纪研究的重要课题,其高效转换和洁净利用越来越受到世界各国关注。通过生物质快速热解技术制取生物油,是一种很有开发前景的生物质应用技术,已日益成为国内外众多学者研究的热点课题。该工艺虽然目前还未实现大规模工业化应用,但研究证明切实可行,具有广阔的市场前景。
参考文献
[1]姚福生,易维明等.生物质快速热解液化技术[J].中国工程科学,2001,3(4):63-67
[2]郭艳,王 ,魏飞等.生物质快速裂解液化技术的研究进展[J].化工进展,2001,20(8):13-17.
[3]吴创之,阴秀丽.欧洲生物质能利用的研究现状与特点[J].新能源,1999,21(3):30-35.
[4]Meier D, Faix O. State of the art or applied pyrolysis of lignocellulosic materials: a review [J]. Bioresource Technology, 1999,68:71-77.
[5]Graham R G, Freel B A. Rapid thermal processing (RTP): biomass fast pyrolysis overview [A].In: Hogan E,Robert J, Grassi G, et al. Biomass processing[M].Newbury, UK: CPL Press,1992.52-63.
[6]徐保江,李美玲,曾忠.旋转锥式闪速热解生物质试验研究[J].环境过程工程,1999,17(5):71-74.
[7]Roy C, Lemieux R, de Caumia B, et al. Processing of wood chips in a semi-continuous multiple hearth vacuum pyrolysis reactor[A].In: Soltes E J, Milne T A. ACS symposium series 376 (Pyrolysis oils from biomass: producing, analyzing and upgrading) [C]. Washington D C: American Chemical Society,1988.16-30.endprint
摘 要:文章综述了国内外快速热解技术的发展现状,并提出了未来快速热解研究方面的主要方向和发展趋势。
关键词:生物质能源;快速热解;研究趋势
1 引言
生物质能源是未来可持续发展能源系统的重要组成部分,是未来化石燃料的替代品之一,其高效转换和洁净利用日益受到全世界的关注。
目前,国外已经研究开发了快速热解技术,即生物质瞬间热解制取液体燃料油,是一种很有开发前景的生物质应用技术。作为一项资源高效利用的新技术,生物质快速热解技术逐渐受到重视,已成为国内外众多学者研究的热点课题。
2 国外发展现状
国外对于生物质的快速热解做了大量工作,特别是欧、美等发达国家,从20世纪70年代首次进行生物质快速热解实验以来,已经形成较完备的技术设备和工业化系统。
为了方便热解液化方面的学术交流和技术合作,欧洲在1995年和2001年分别成立了PyNE组织(Pyrolysis Network for Europe) 和GasNet (European Biomass Gasification Network)组织,前者拥有18个成员国,后者现拥有20个成员国以及8家工业单位成员。这两大组织在快速热解技术的开发以及生物油的利用方面做了大量富有成效的工作。
国际能源署(IEA)组织了加拿大、芬兰、意大利、瑞典、英国及美国的10余个研究小组进行了10余年的研究工作,重点对这一过程发展的潜力、技术、经济可行性以及参与国之间的技术交流进行了协调,并在所发表的报告中得出了十分乐观的结论[1]。
荷兰Twente于1989年由Van Swaaij和W Prins等人提出并开始研制旋转锥式反应工艺(Twente rotating cone process),到1995年取得初步成功[2,3]。
加拿大Ensyn工程师协会研制的循环流化床工艺在芬兰安装了20kg/h的小规模装置,在意大利的Bastardo建成了650kg/h规模的示范装置[4,5]。
加拿大Waterloo(滑铁卢)大学在20世纪80年代开始开发流化床热解技术,目前加拿大达茂公司的设备日处理能力达200t [3,5]。
Christian Roy博士和他的研究小组1981年起在Laval大学进行真空移动床的工艺研究,2000年被Pyrovac国际公司在加拿大的Jonquiere建立规模为3.5t/h的示范工厂[6,7]。
美国Georgia(佐治亚)工学院1980年开发了引流床反应器,但直到1989年左右才成功运行,可得到58%的液体产物。
3 国内发展现状
国内在生物质快速热解技术方面的研究工作起步较晚,并不成熟。但相关研究机构正在从事方面研究工作,也开发了多种反应器。
浙江大学于20世纪90年代中期,在国内率先开展了相关的原理性试验研究,使用GC-MS联用技术定量分析了生物油的主要组分。山东工程学院开发了等离子体快速加热生物质液化技术,1999年6月首次在国内制出了生物油并进行了成分分析。中国科学院广州能源研究所(GIEC)也自主研制了生物质循环流化床液化小型装置,可取得63%的液体产率。
表2列举了近年来我国国内研究的几种主要反应器。
可见,流化床反应器运行简单、结构紧凑、容易放大,已经得到越来越多的重视。
4 发展趋势
目前尚待解决的问题有以下几点:
机理研究需要进一步深入。目前被用于快速热解的生物质原料已有几十种,寻求合适的原料对于提高产物的品质至关重要。
液体的收集和工业放大方面仍需改进工艺。
降低成本,增加生物质能的竞争力。我国劳动力和原料的价格低廉、产业化生产基建投资是最大的费用,要在系统设计和设备的制造上有所创新以降低整个生产的投资。
在快速热解产物的分析和精制方面,仍需大量的探索,重点研发生物油的精制工艺,提高生物油的品位,使其能够真正成为石油的替代品。
可见,开发和改进快速热解技术的主要方向应该是提高生物质的转化率,提升生物油品质,优化反应系统的整体效率及开发适于其特殊性质的新的应用领域。
5 结束语
生物质能源是备受世界关注的可再生能源,已成为21世纪研究的重要课题,其高效转换和洁净利用越来越受到世界各国关注。通过生物质快速热解技术制取生物油,是一种很有开发前景的生物质应用技术,已日益成为国内外众多学者研究的热点课题。该工艺虽然目前还未实现大规模工业化应用,但研究证明切实可行,具有广阔的市场前景。
参考文献
[1]姚福生,易维明等.生物质快速热解液化技术[J].中国工程科学,2001,3(4):63-67
[2]郭艳,王 ,魏飞等.生物质快速裂解液化技术的研究进展[J].化工进展,2001,20(8):13-17.
[3]吴创之,阴秀丽.欧洲生物质能利用的研究现状与特点[J].新能源,1999,21(3):30-35.
[4]Meier D, Faix O. State of the art or applied pyrolysis of lignocellulosic materials: a review [J]. Bioresource Technology, 1999,68:71-77.
[5]Graham R G, Freel B A. Rapid thermal processing (RTP): biomass fast pyrolysis overview [A].In: Hogan E,Robert J, Grassi G, et al. Biomass processing[M].Newbury, UK: CPL Press,1992.52-63.
[6]徐保江,李美玲,曾忠.旋转锥式闪速热解生物质试验研究[J].环境过程工程,1999,17(5):71-74.
[7]Roy C, Lemieux R, de Caumia B, et al. Processing of wood chips in a semi-continuous multiple hearth vacuum pyrolysis reactor[A].In: Soltes E J, Milne T A. ACS symposium series 376 (Pyrolysis oils from biomass: producing, analyzing and upgrading) [C]. Washington D C: American Chemical Society,1988.16-30.endprint
摘 要:文章综述了国内外快速热解技术的发展现状,并提出了未来快速热解研究方面的主要方向和发展趋势。
关键词:生物质能源;快速热解;研究趋势
1 引言
生物质能源是未来可持续发展能源系统的重要组成部分,是未来化石燃料的替代品之一,其高效转换和洁净利用日益受到全世界的关注。
目前,国外已经研究开发了快速热解技术,即生物质瞬间热解制取液体燃料油,是一种很有开发前景的生物质应用技术。作为一项资源高效利用的新技术,生物质快速热解技术逐渐受到重视,已成为国内外众多学者研究的热点课题。
2 国外发展现状
国外对于生物质的快速热解做了大量工作,特别是欧、美等发达国家,从20世纪70年代首次进行生物质快速热解实验以来,已经形成较完备的技术设备和工业化系统。
为了方便热解液化方面的学术交流和技术合作,欧洲在1995年和2001年分别成立了PyNE组织(Pyrolysis Network for Europe) 和GasNet (European Biomass Gasification Network)组织,前者拥有18个成员国,后者现拥有20个成员国以及8家工业单位成员。这两大组织在快速热解技术的开发以及生物油的利用方面做了大量富有成效的工作。
国际能源署(IEA)组织了加拿大、芬兰、意大利、瑞典、英国及美国的10余个研究小组进行了10余年的研究工作,重点对这一过程发展的潜力、技术、经济可行性以及参与国之间的技术交流进行了协调,并在所发表的报告中得出了十分乐观的结论[1]。
荷兰Twente于1989年由Van Swaaij和W Prins等人提出并开始研制旋转锥式反应工艺(Twente rotating cone process),到1995年取得初步成功[2,3]。
加拿大Ensyn工程师协会研制的循环流化床工艺在芬兰安装了20kg/h的小规模装置,在意大利的Bastardo建成了650kg/h规模的示范装置[4,5]。
加拿大Waterloo(滑铁卢)大学在20世纪80年代开始开发流化床热解技术,目前加拿大达茂公司的设备日处理能力达200t [3,5]。
Christian Roy博士和他的研究小组1981年起在Laval大学进行真空移动床的工艺研究,2000年被Pyrovac国际公司在加拿大的Jonquiere建立规模为3.5t/h的示范工厂[6,7]。
美国Georgia(佐治亚)工学院1980年开发了引流床反应器,但直到1989年左右才成功运行,可得到58%的液体产物。
3 国内发展现状
国内在生物质快速热解技术方面的研究工作起步较晚,并不成熟。但相关研究机构正在从事方面研究工作,也开发了多种反应器。
浙江大学于20世纪90年代中期,在国内率先开展了相关的原理性试验研究,使用GC-MS联用技术定量分析了生物油的主要组分。山东工程学院开发了等离子体快速加热生物质液化技术,1999年6月首次在国内制出了生物油并进行了成分分析。中国科学院广州能源研究所(GIEC)也自主研制了生物质循环流化床液化小型装置,可取得63%的液体产率。
表2列举了近年来我国国内研究的几种主要反应器。
可见,流化床反应器运行简单、结构紧凑、容易放大,已经得到越来越多的重视。
4 发展趋势
目前尚待解决的问题有以下几点:
机理研究需要进一步深入。目前被用于快速热解的生物质原料已有几十种,寻求合适的原料对于提高产物的品质至关重要。
液体的收集和工业放大方面仍需改进工艺。
降低成本,增加生物质能的竞争力。我国劳动力和原料的价格低廉、产业化生产基建投资是最大的费用,要在系统设计和设备的制造上有所创新以降低整个生产的投资。
在快速热解产物的分析和精制方面,仍需大量的探索,重点研发生物油的精制工艺,提高生物油的品位,使其能够真正成为石油的替代品。
可见,开发和改进快速热解技术的主要方向应该是提高生物质的转化率,提升生物油品质,优化反应系统的整体效率及开发适于其特殊性质的新的应用领域。
5 结束语
生物质能源是备受世界关注的可再生能源,已成为21世纪研究的重要课题,其高效转换和洁净利用越来越受到世界各国关注。通过生物质快速热解技术制取生物油,是一种很有开发前景的生物质应用技术,已日益成为国内外众多学者研究的热点课题。该工艺虽然目前还未实现大规模工业化应用,但研究证明切实可行,具有广阔的市场前景。
参考文献
[1]姚福生,易维明等.生物质快速热解液化技术[J].中国工程科学,2001,3(4):63-67
[2]郭艳,王 ,魏飞等.生物质快速裂解液化技术的研究进展[J].化工进展,2001,20(8):13-17.
[3]吴创之,阴秀丽.欧洲生物质能利用的研究现状与特点[J].新能源,1999,21(3):30-35.
[4]Meier D, Faix O. State of the art or applied pyrolysis of lignocellulosic materials: a review [J]. Bioresource Technology, 1999,68:71-77.
[5]Graham R G, Freel B A. Rapid thermal processing (RTP): biomass fast pyrolysis overview [A].In: Hogan E,Robert J, Grassi G, et al. Biomass processing[M].Newbury, UK: CPL Press,1992.52-63.
[6]徐保江,李美玲,曾忠.旋转锥式闪速热解生物质试验研究[J].环境过程工程,1999,17(5):71-74.
[7]Roy C, Lemieux R, de Caumia B, et al. Processing of wood chips in a semi-continuous multiple hearth vacuum pyrolysis reactor[A].In: Soltes E J, Milne T A. ACS symposium series 376 (Pyrolysis oils from biomass: producing, analyzing and upgrading) [C]. Washington D C: American Chemical Society,1988.16-30.endprint