APP下载

内蒙古道伦达坝铜钨多金属矿黑云母花岗岩年代学、地球化学特征及其地质意义**

2014-03-14周振华欧阳荷根武新丽刘军车合伟ZHOUZhenHuaOUYANGHeGenWUXinLiLIUJunandCHEHeWei

岩石学报 2014年1期
关键词:黑云母锆石同位素

周振华 欧阳荷根 武新丽 刘军 车合伟ZHOU ZhenHua, OUYANG HeGen, WU XinLi, LIU Jun and CHE HeWei

1. 中国地质科学院矿产资源研究所,国土资源部成矿作用与资源评价重点实验室,北京 1000372. 华北冶金地质勘查局第四地质队,秦皇岛 0660133. 中国地质大学地球科学与资源学院,北京 1000831. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China2. The Fourth Geological Team, Metallurgical and Geological Exploration Bureau of North China, Qinhuangdao 066013, China3. School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China2013-08-01 收稿, 2013-11-24 改回.

大兴安岭地区位于兴蒙造山带东段,是中亚巨型内生金属成矿带的重要组成部分,其构造演化经历了古生代古亚洲洋构造体系演化和中生代环太平洋构造体系以及蒙古-鄂霍茨克构造体系的叠加与改造,以广泛发育内生铜等有色金属、贵金属矿床、矿化点倍受国内外学者的关注(毛景文等,2003,2005,2013;Wuetal., 2011; 白令安等,2012;周振华等,2010a, b;Zhouetal., 2012; Liuetal., 2012; Ouyangetal., 2013)。近年来,随着地质找矿和科研工作的不断投入,大兴安岭地区的找矿工作取得重要进展,在大兴安岭中南段西坡新发现了拜仁达坝超大型银铅锌矿、维拉斯托大型铜锌矿、道伦达坝大型铜钨锡多金属矿、花敖包特大型银铅锌矿等。在这些新发现矿床中,道伦达坝铜钨锡多金属矿在构造位置、矿化类型、成矿作用等方面具有鲜明的特色,成矿与中粗粒黑云母花岗岩体密切相关。道伦达坝铜钨多金属矿主要成矿元素为铜、钨、锡,目前已探明铜、钨、锡的金属量分别为9.34万吨、2.98万吨和4.68万吨,此外还伴生银352.34吨,矿床综合规模已达到大型(据内蒙古地矿局,2011*内蒙古地矿局.2011.内蒙地矿局2005-2009年找矿成果统计表)。

前人对道伦达坝矿床的矿床地质特征、控矿构造、成矿流体、成矿物质来源等方面进行了一定的研究(潘小菲等,2009;徐佳佳等,2009;李振祥等,2009;王万军等,2005),但对于本区与成矿密切相关的中粗粒黑云母花岗岩的精确同位素年代学和岩浆来源研究较少。关于岩体的形成时代存在较大争议,王万军等(2005)测得黑云母花岗岩全岩Rb-Sr等时线年龄196±5.0Ma,程若坤(2009)报道的K-Ar年龄为160±5.0Ma~170±5.0Ma。矿床的精确测年是建立矿床模型和反演成矿地球动力学背景的重要基础资料(谢桂青等,2009;Yuanetal., 2007, 2008, 2011),因此,本文对道伦达坝中粗粒黑云母花岗岩进行了岩石地球化学、LA-ICP-MS锆石U-Pb定年和Hf-Pb同位素研究,试图精确厘定岩体的形成时代和岩浆来源,为揭示矿床成因机制和总结区域成矿规律提供依据。

1 区域地质背景

研究区大地构造位置处于北部的西伯利亚板块和南部的华北板块及东部的松辽板块的接合部,锡林浩特微板块北部边缘地带(图1a)。区域地层出露有下元古界宝音图群黑云斜长片麻岩夹少量片岩及变粒岩、石炭统碎屑岩、碳酸盐沉积、下二叠统灰黑色粉砂质板岩、粉砂质泥岩、泥质粉砂岩及长石石英砂岩、侏罗系火山喷发岩及火山碎屑沉积和第四系砂土、河流冲积、残坡积及砾石层。

区内最重要的构造为米生庙复式背斜及与其有密切关联的三个挤压断裂带,它们均是由相互平行或近于平行的挤压破碎带和断裂群组成,各带之间具较好的等距性,其间距为10km左右。米生庙复式背斜沿乌套海-米生庙-达青牧场-阿拉腾郭勒一线呈北东向横贯全区,其展布宽度达60km,核部为华力西期中酸性、中基性侵入岩和下元古界宝音图群杂岩。区内断裂构造可划分为北北东向,北东向、东西向及南北向四组,其中以北北东向和北东向占主导地位,北东向和北北东向绝大多数分布在米生庙复式背斜的展布区。

区内岩浆岩活动频繁,分布广泛,自华力西期到燕山晚期均有侵入活动。岩性种类繁多,从超基性-基性-酸性均有产出,包括华力西中期石英闪长岩(δo42)、华力西晚期角闪辉长岩(υ43(2));印支期中细粒黑云母花岗岩(γ51)及燕山晚期石英斑岩(λπ53)。

图1 道伦达坝铜钨多金属矿大地构造位置图(a, 据Xiao et al., 2003修改)和矿区地质简图(b,据王万军等,2005修改)Fig.1 Tectonic position (a, after Xiao et al., 2003) and schematic geological map (b, after Wang et al., 2005) of the Daolundaba Cu-W polymetallic deposit

图2 道伦达坝铜钨多金属矿床构造示意图(a)和A-A′矿体剖面图(b)Fig.2 Tectonicon schematic diagram (a) and sectional drawing of A-A′ orebody (b) of Daolundaba Cu-W polymetallic deposit

2 矿床地质概况

道伦达坝铜钨多金属矿床位于内蒙古西乌旗道伦达坝苏木北约3km,大地构造位置位于锡林浩特微板块北部边缘地带(图1a),为华北板块北缘与西伯利亚板块南缘的接触过渡带,从元古宙到中生代经历了多期次的构造-岩浆活动(邵济安等,1998)。该矿床的钨锡金属总储量达到大型,铜为中型规模,铜、钨品位较富,Cu平均品位1%~5%左右,WO3平均0.1%~1%左右,局部达到5%(王万军等,2005)。矿区出露的地层主要有下元古界宝音图群(Pt1by)黑云母斜长片麻岩及变粒岩和上二叠统林西组(P2l)粉砂质板岩、粉砂质泥岩及粉砂岩,以及少量上侏罗统白音高老组(J3b)酸性火山碎屑岩(图1b)。

图3 道伦达坝铜钨矿床手标本(a-d)及显微(e-f, 正交偏光; g-h, 单偏光)照片(a)-含星点状黄铁矿黑云母花岗岩;(b)-黑云母花岗岩穿切黑色粉砂岩;(c)-产于黑色粉砂岩中的黄铜矿矿石;(d)-产于石英脉中的黄铜矿-黄铁矿矿石;(e、f)-黑云母花岗岩显微照片,斜长石发生绢云母化;(g)-星点状黄铁矿;(h)-黄铜矿和黄铁矿共生.Qz-石英;Bt-黑云母;Ser-绢云母;Kfs-钾长石;Pl-斜长石;Py-黄铁矿;Ccp-黄铜矿;Bn-斑铜矿Fig.3 Photos of specimens (a-d) and microphotographs (e-f, orthogonal polarization; g-h, polarized light) of samples in the Daolundaba Cu-W polymetallic deposit(a)-star-shaped pyrite-bearing biotite granite; (b)-biotite granite cut across black siltstone; (c)-chalcopyrite ores produced in black siltstone; (d)-chalcopyrite-pyrite ores produced in quartz veins; (e, f)-photomicrograph of biotite granite, sericitization can be seen in plagioclase; (g)-star-shaped pyrite; (h)-intergrowth of chalcopyrite and pyrite. Qz-quartz; Bt-biotite; Ser-sericite; Kfs-K-feldspar; Pl-plagioclase; Py-pyrite; Ccp-chalcopyrite; Bn-bornite

区内褶皱构造发育,不同级别的褶皱互相平行,呈北东向展布(图2a),断裂构造以北东向和北北东向为主(李振祥等,2009),且控制了铜、钨、锡矿产的分布,次为北西向和近南北向断裂,近东西向断裂相对较少。区内岩浆活动发育,与成矿密切相关的岩浆岩为前进场花岗岩体,岩性主要为中粗粒黑云母花岗岩(图3a, b, e, f)。矿区内各类酸性脉岩非常发育,主要类型有花岗细晶岩脉、细粒花岗岩脉、石英脉及石英斑岩脉等。

矿体多赋存于花岗岩体与地层的接触部位或花岗岩体内部,受断裂构造控制作用明显,矿体膨胀收缩、分枝复合及尖灭再现等现象常见。矿体走向总体上为北东向,中等倾斜或陡倾斜,少数呈北北东向、北北西向和近东西向延展(图2b)。根据有益元素组合与含量,可划分为铜矿体、钨矿体、锡矿体等异体共生矿,铜钨矿体、铜锡矿体、钨锡矿体等同体共生矿(潘小菲等,2009)。矿体与围岩接触界线不明显,呈交代渐变过渡的特征,钨锡矿体表现更为明显。主要金属矿物有磁黄铁矿、锡石、黑钨矿、黄铜矿、毒砂等,次要金属矿物有黝铜矿、砷黝铜矿、黝锡矿、闪锌矿、方铅矿、自然银、自然铋、赤铁矿、白铁矿、胶状黄铁矿、褐铁矿、孔雀石、蓝铜矿等。脉石矿物有石英、萤石、钾长石、绢云母、绿泥石、方解石等。矿石结构复杂,以交代熔蚀结构和半自形晶粒状结构为主,此外还有乳滴状结构、他形粒状结构、填隙结构、镶边结构等。矿石构造主要为脉状、网脉状、交错脉状、浸染状、团块状等。围岩蚀变普遍发育,蚀变宽度一般可达几米,可见硅化、黄铁绢云岩化、碳酸盐化、绿泥石化、高岭土化、钾长石化、云英岩化、萤石化、电气石化,其中硅化、云英岩化、萤石化与矿体关系最为密切。硅化是矿区最广泛的蚀变,从高温到中温热液阶段都存在,表现形式多样,既有细粒到粗粒石英,也可见有石英脉。云英岩化主要发育在接触带附近的围岩和岩体中,从矿体向外依次分布有3种类型的云英岩:钨矿体中富含石英的云英岩、富白云母云英岩、块状云英岩。萤石化主要发育在矿体、矿化蚀变带中,多具溶蚀现象。

道伦达坝矿床的钨、锡矿化与云英岩化和萤石化关系密切,而铜矿化主要产于离岩体接触带稍远的硅化粉砂质板岩中。矿区内脉体广泛发育,根据野外观察脉体之间的穿插关系,结合手标本及镜下鉴定,从早到晚可将成矿过程划分为4个阶段,即,(1)气成-高温热液阶段(Ⅰ阶段):该阶段广泛发育硅化、云英岩化、萤石化、电气石化,云英岩型钨矿脉除多数分布于硅化粉砂质板岩内外,局部还见赋存于岩体中。主要矿石矿物有黑钨矿、白钨矿、锡石,少量毒砂、磁黄铁矿等;(2)高温热液阶段(Ⅱ阶段):黄铁绢英岩化、绿泥石化和萤石化发育,矿石矿物组合为黑钨矿、白钨矿、锡石、毒砂、辉铋矿、磁黄铁矿等,脉石矿物主要为石英和萤石;(3)中温热液阶段(Ⅲ阶段):主要蚀变类型为硅化、萤石化、绿泥石化、绢云母化、碳酸盐化,矿石矿物有黄铜矿、黄铁矿、磁黄铁矿、菱铁矿、自然银、自然铋、银黝铜矿等,是主要的铜矿化阶段(图3c, d, g, h);(4)低温热液阶段(Ⅳ阶段):属成矿后热液活动,表现为晚期的方解石、萤石脉穿切早期矿物,发育碳酸盐化、萤石化。表生作用较弱,可见少量沿破碎带或裂隙面分布的蓝铜矿化、斑铜矿化及褐铁矿化。

3 样品及测试方法

本次研究所用样品采自道伦达坝矿床11号竖井1072标高10号矿脉上盘远离矿体的中粗粒黑云母花岗岩体,样品新鲜,手标本及镜下观察显示蚀变较弱。样品为灰白色,中粗粒花岗结构,块状构造。主要组成矿物有石英(30%~35%)、斜长石(25%~30%)、钾长石(20%~25%)、黑云母(5%~8%),副矿物主要有锆石、磷灰石等。石英具强波状消光,集合体大致定向分布。斜长石呈自形-半自形,聚片双晶发育,局部发生绢云母化和粘土化(图3e, f)。钾长石具有典型的卡氏双晶,表面有泥化现象,部分含钠长石条纹,形成条纹长石,条纹比较细密。黑云母呈自形片状集合体产出,呈黄色-红褐色多色性(图3e, f),偶见绿泥石化。

LA-ICP-MS锆石U-Pb定年和Hf同位素测试分析在中国地质科学院矿产资源研究所的Neptune多接收电感耦合等离子体质谱和Nd-YAG 213nm激光剥蚀系统下完成。

锆石U-Pb定年所采用的激光剥蚀坑径为25μm,频率10Hz,能量密度约2.5J/cm2,信号较小的207Pb,206Pb,204Pb(+204Hg),202Hg用离子计数器(multi-ion-counters)接收,208Pb,232Th,238U信号用法拉第杯接收,实现了所有目标同位素信号的同时接收并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据,均匀锆石颗粒207Pb/206Pb,206Pb/238U,207Pb/235U的测试精度(2σ)均为2%左右,对锆石标准的定年精度和准确度在1%(2σ)左右。LA-MC-ICP-MS激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1进行调试仪器,使之达到最优状态,锆石U-Pb定年以锆石GJ-1为外标,U、Th含量以锆石M127(U: 923×10-6; Th: 439×10-6; Th/U: 0.475. Nasdalaetal., 2008)为外标进行校正。测试过程中在每测定5~7个样品前后重复测定2个锆石GJ1对样品进行校正,并测量一个锆石Plesovice,观察仪器的状态以保证测试的精确度。数据处理采用ICPMSDataCal程序(Liuetal., 2009),测量过程中绝大多数分析点206Pb/204Pb大于1000,未进行普通铅校正,204Pb由离子计数器检测,204Pb含量异常高的分析点可能受包体等普通Pb的影响,对204Pb含量异常高的分析点在计算时剔除,锆石年龄谐和图用Isoplot 3.0程序获得(Ludwig, 2001a, b)。详细实验过程见侯可军等(2009)。样品分析过程中,Plesovice标样作为未知样品的分析结果为337.3±2.5Ma(n=4,2σ),对应的年龄推荐值为337.1±0.37(2σ)(Slámaetal., 2008),两者在误差范围内完全一致。

锆石Hf同位素测试的激光坑径为55μm,频率20Hz,能量密度约15J/cm2,采用锆石国际标样GJ1作为参考物质,在U-Pb定年的原分析点上测定Hf同位素组成。相关仪器运行条件及详细分析流程见侯可军等(2007)。分析过程中锆石标准GJ1的176Hf/177Hf测试加权平均值为0.282015±28(2SD,n=10),与文献报道值(侯可军等,2007;Elhlouetal., 2006)在误差范围内一致。

岩体主量、微量和稀土元素分析测试在核工业北京地质研究院分析测试研究中心完成,仪器型号为Finnigan MAT制造,HR-ICP-MS(ElementⅠ),测试方法和依据参照DZ/T0223-2001(电感耦合等离子体质谱(ICP-MS)方法通则,实验过程中温度20℃,相对湿度30%。

全岩铅同位素测试分析在核工业北京地质研究院完成,仪器型号为ISOPROBE-T热电离质谱仪,M+,可调多法拉第接收器接收,测试方法和依据参照GB/T 17672—1999(岩石中铅锶钕同位素测定方法,实验过程中温度22℃,相对湿度40%)。Pb采用阴离子交换树脂分离,用热表面电离质谱法进行铅同位素测定,对1μg的铅208Pb/206Pb测试精度≤0.005%。

4 测试结果

4.1 岩石地球化学特征

4.1.1 主量元素

道伦达坝黑云母花岗岩的全岩主量、微量和稀土元素分析结果见表1。从表1中可以看出,研究区样品的SiO2含量为65.42%~67.41%,富钾(K2O=3.82%~4.38%),富铝(Al2O3=15.24%~16.47%),全碱(Na2O+K2O)质量分数值较高(7.41%~8.21%),属高钾钙碱性系列(图4a)。CaO

图4 道伦达坝黑云母花岗岩的SiO2-K2O图解(a)和A/NCK-A/NK图解(b)Fig.4 The SiO2 vs. K2O diagram (a) and A/NCK vs. A/NK diagram (b) of biotite granite in the Daolundaba deposit

表1道伦达坝铜钨矿黑云母花岗岩岩石地球化学成分表(主量元素:wt%;稀土和微量元素:×10-6)

Table 1 Chemical composition of biotite granitite in the Daolundaba Cu-W deposit (major elements: wt%; trace elements: ×10-6)

样品号DL-01DL-02DL-03DL-04DL-05DL-06DL-07DL-08DL-09DL-10DL-11DL-12DL-13DL-14SiO266.7967.2366.1766.0866.2067.0566.4566.4965.4266.3066.4666.4467.0467.41Al2O315.6715.5815.8816.6315.7616.4715.3116.4216.3716.2515.4315.2416.0715.95FeO1.001.301.050.751.100.651.400.900.800.351.051.100.500.30Fe2O34.604.204.444.594.394.224.214.594.854.564.434.654.284.42MgO1.050.991.071.031.010.901.081.111.151.031.121.091.070.96CaO2.221.611.972.201.811.271.621.872.192.121.762.031.951.35Na2O3.763.703.703.824.243.593.643.563.783.723.473.523.473.58K2O3.933.973.823.983.974.384.373.873.953.953.943.963.954.22MnO0.040.030.040.040.030.020.020.040.040.040.050.040.040.03TiO20.660.560.610.650.590.590.610.650.700.660.600.650.600.55P2O50.260.170.180.220.200.220.220.150.230.260.170.210.180.18LOI0.500.420.570.230.270.750.940.740.790.571.040.650.810.81TOTAL100.4899.7699.50100.2299.57100.1199.87100.39100.2799.8199.5299.5899.9699.76Na2O+K2O7.697.677.527.808.217.978.017.437.737.677.417.487.427.80A/NCK1.081.171.151.141.081.271.121.221.131.141.171.111.191.23Mg#3836394037393740414440384443Cor1.822.702.542.571.694.082.203.352.462.652.712.003.003.51Pb24.5019.7021.0021.5021.7018.2021.3021.8022.9023.0022.8021.1022.6017.70Rb164175149174160244197167197175147163169243Ba9418359219199078591263949966102996410221078853Th16.9016.2016.3016.7015.9015.6015.4017.4018.8017.3016.8016.5017.1016.70U3.252.953.073.883.443.433.153.114.103.823.013.484.072.71Nb16.2013.3013.7014.7014.8014.0015.1016.5017.8016.8012.5016.5015.1014.30Ta1.331.161.061.321.351.201.241.321.621.440.871.211.301.04Sr190199208187224180220206199205199198216138Zr95.369.567.996.210590.466.591.698.757.693.381.395.2102Hf2.611.692.052.332.602.681.922.522.481.722.612.272.572.53La44.8042.2045.3045.6042.5041.5045.3045.6051.6048.1045.8046.6047.5046.60Ce94.2091.4094.4097.0089.0087.1093.1095.70103.00101.0096.8095.3095.1096.40Pr11.9011.4011.5012.0011.0011.2011.4012.2013.2012.6011.7012.2012.2011.90Nd46.2045.3047.3048.4044.7044.7046.1047.6053.5049.5048.2048.9049.0046.10Sm10.109.1510.109.579.569.199.418.8111.1010.009.879.279.6310.00Eu1.631.561.781.991.601.631.981.601.871.551.841.761.841.20Gd9.618.468.539.048.738.458.889.3710.809.609.249.299.539.00Tb1.581.401.401.411.641.481.391.551.851.651.401.571.631.47Dy7.936.927.907.248.347.157.017.478.928.147.207.607.966.98Ho1.401.111.371.251.621.211.121.441.561.381.281.301.451.22Er3.553.483.923.214.233.363.003.654.503.793.723.624.133.18Tm0.510.500.550.450.660.460.460.520.650.560.540.510.570.44Yb3.272.693.142.753.842.732.453.473.573.292.913.093.382.77Lu0.500.390.460.370.570.370.370.460.540.460.440.420.490.37Y39.8036.0041.4036.0048.3035.9033.2042.2050.1041.1039.8040.7045.7035.10∑REE237.2226.0237.7240.3228.0220.53232.0239.4266.7251.6240.9241.4244.4237.6LREE/HREE7.378.067.718.346.697.758.407.577.237.728.017.817.398.34(La/Yb)N9.8311.2510.3511.897.9410.9013.269.4310.3710.4911.2910.8210.0812.07δEu0.510.540.590.650.540.570.660.540.520.480.590.580.590.39δCe1.001.021.011.021.010.991.000.990.971.011.030.980.971.00

注:主量元素由XRF测定,微量元素由ICP-MS测定; LOI-烧失量; A/NCK=molar ratio of Al2O3/(CaO+K2O+Na2O); Mg#=(molar100×Mg/(Mg+Fe)); Cor-CIPW标准矿物刚玉含量;δEu=EuN/(SmN×GdN)1/2

图5 道伦达坝黑云母花岗岩REE配分图(a)和微量元素蛛网图(b)(球粒陨石和原始地幔标准化值据Sun and McDonough, 1989)Fig.5 Chondrite-normalized REE pattern (a) and primitive mantle-normalized spider diagram (b) of biotite grantite in the Daolundaba (normalized values after Sun and McDonough, 1989)

和TiO2的含量均较高,变化范围分别在1.35%~2.22%和0.55%~0.70%。A/NCK值为1.08~1.27,CIPW标准矿物计算中,刚玉(Cor)含量较高,变化范围在1.82%~4.08%之间,属于典型的过铝质岩石(图4b),显示S型花岗岩的特征。Mg#相对较低,变化范围在36~44。

4.1.2 稀土、微量元素

样品的稀土元素球粒陨石标准化配分图见图5a。岩石的稀土元素特征表现为,ΣREE含量较低(220.5×10-6~266.7×10-6),LREE/HREE和(La/Yb)N变化范围较小,分别为6.69~8.40和7.94~13.26,属于右倾轻稀土富集型。Eu中等负异常(δEu=0.48~0.66),Ce异常不明显(δCe=0.97~1.03)。

微量元素特征中,大离子亲石元素Rb、Sr的含量分别为147×10-6~244×10-6和138×10-6~224×10-6,Ba含量变化范围较大,介于835×10-6~1263×10-6之间;Yb含量较高,变化范围在2.45×10-6~3.84×10-6,属于低Sr高Yb型(Sr<400×10-6,Yb>2×10-6),说明其形成的压力较低(<0.8或1.0GPa),残留相有斜长石无石榴石(角闪岩相)(Martinetal., 2005);放射性热元素U(2.71×10-6~4.10×10-6)、Th(15.40×10-6~17.40×10-6)含量较低;高场强元素Nb(12.50×10-6~17.80×10-6)、Ta(0.87×10-6~1.62×10-6)、Zr(57.6×10-6~105×10-6)、Hf(1.69×10-6~2.68×10-6)等含量较低,Nb/Ta比值在10.96~14.37之间,低于幔源岩浆Nb/Ta=17±1的比值(Hofmann, 1988)。微量元素蛛网图(图5b)显示,道伦达坝岩体富集Rb、Pb、Nd、Sm等,具有明显的Nb、Ta、Sr、P、Ti等亏损特征,强不相容元素Rb的强烈富集暗示花岗岩浆可能发生了充分分异,P、Ti的亏损表明磷灰石和钛铁矿可能已发生明显的分离结晶或源区存在寄主矿物的残留(周振华等,2010a)。

4.2 年代学

道伦达坝中粗粒黑云母花岗岩中锆石结晶较好,呈典型的长柱状晶形,具有典型的岩浆震荡环带,指示其主体为岩浆结晶的产物。由锆石的阴极发光图像(图6)可以看出,几乎所有锆石均具有清晰的单期生长的同心环带特征。

对2件样品(DL-01、DL-14)分别进行了20个点的测试,锆石U-Pb有效分析结果列于表2,谐和图见图7,谐和性95%以上。样品DL-01的12个测点206Pb/238U年龄变化范围为289.6~294.3Ma,Th/U=0.05~1.09,平均值0.53。样品DL-01的U和Th含量较低,分别为34×10-6~283×10-6和13×10-6~38×10-6。样品DL-14的9个测点206Pb/238U年龄变化范围为291.7~294.2Ma,Th/U=0.12~1.16,平均值0.48。2件样品除1个测点外其余测试点的Th/U均大于0.1,符合岩浆成因锆石的特征(Hoskin and Black, 2000),这与锆石在CL图像上呈现的典型的岩浆震荡环带的特征是一致的。这些点均投影在谐和线上或附近,2件样品(DL-01、DL-14)的206Pb/238U加权平均年龄分别为292.1±0.84Ma(2σ,N=12,MSWD=1.18)和292.5±0.88Ma(2σ,N=9,MSWD=0.46),代表黑云母花岗岩的结晶年龄,为早二叠世产物。本次研究的结果与潘小菲等(未发表数据)的SHRIMP锆石U-Pb年龄286±5.0Ma在误差范围内一致。由于地层一般为碰撞后盖层沉积,因此,对林西组地层单元的时代可能需要进行重新厘定。

4.3 Hf同位素特征

Hf同位素分析结果(表3)显示,大多数测试点的176Lu/177Hf比值都小于0.002,表明锆石在形成以后基本没有明显的放射性成因Hf的积累,所测样品的176Lu/177Hf基本代表了其形成时体系的Hf同位素组成(Amelinetal., 1999; Patchettetal., 1981; Knudsenetal., 2001)。样品DL-01分析点的176Hf/177Hf比值分布于0.282666~0.282786,εHf(t)值为-0.8~+13.3,平均+6.8,两阶段Hf模式年龄(tDM2)变化范围为773~998Ma;样品DL-14分析点的176Hf/177Hf比值分布于0.282643~0.282804,εHf(t)值为+1.0~+13.1,平均+6.4,两阶段Hf模式年龄(tDM2)变化范围为740~1024Ma。

图6 道伦达坝铜钨多金属矿床黑云母花岗岩锆石阴极发光(CL)图像及测试位置Fig.6 Cathodoluminescence (CL) images of representative zircons and measuring positions of the biotite granite from the Daolundaba Cu-W polymetallic deposit

表2道伦达坝黑云母花岗岩LA-ICP-MS锆石U-Pb分析数据

Table 2 LA-ICP-MS zircon U-Pb age of the biotite granite in the Daolundaba

测点号U(×10-6)Th(×10-6)Th/U206Pb/238U年龄(Ma)1σ207Pb/206Pb年龄(Ma)1σ207Pb206Pb1σ207Pb235U1σ206Pb238U1σDL-01DL-01-0565240.37290.21.80398.236.110.05470.00100.34670.00620.04600.0003DL-01-06283140.05293.30.86420.414.810.05520.00040.35420.00250.04660.0001DL-01-0775380.50291.11.98301.937.030.05240.00080.33340.00530.04620.0003DL-01-0860130.23294.42.31390.877.770.05450.00190.35120.01280.04670.0004DL-01-1058260.45289.61.39376.0112.950.05410.00270.34360.01810.04600.0002DL-01-1149270.56291.51.66353.833.330.05360.00080.34220.00570.04620.0003DL-01-1335381.09291.01.73390.833.330.05450.00080.34710.00570.04620.0003DL-01-1435381.08290.51.63413.033.330.05500.00080.34980.00570.04610.0003DL-01-1659360.61293.31.23390.886.100.05450.00200.35100.01440.04660.0002DL-01-1753160.30292.81.25376.037.030.05410.00090.34650.00550.04650.0002DL-01-1834230.67290.41.67364.945.370.05380.00120.34150.00730.04610.0003DL-01-2064270.42294.31.77272.343.520.05170.00090.33340.00620.04670.0003DL-14DL-14-0161701.16291.91.05189.061.100.04970.00130.31780.00870.04630.0002DL-14-02141160.12293.61.01409.320.370.05490.00050.35300.00330.04660.0002DL-14-0459150.26291.91.78383.442.590.05430.00100.34710.00710.04630.0003DL-14-0548491.02293.11.33420.437.030.05520.00090.35330.00570.04650.0002DL-14-0759130.22292.61.40353.830.550.05360.00060.34330.00420.04640.0002DL-14-0890570.63291.71.16176.024.070.04960.00050.31600.00320.04630.0002DL-14-1476210.28294.21.65409.325.000.05490.00070.35340.00470.04670.0003DL-14-1590480.53292.31.54420.432.410.05520.00070.35260.00460.04640.0003DL-14-17274330.12291.71.58189.018.520.04970.00040.31700.00300.04630.0003

图7 道伦达坝铜钨多金属矿床黑云母花岗岩锆石U-Pb年龄及谐和图Fig.7 Zircon U-Pb age and its concordia diagram of the biotite granite from the Daolundaba Cu-W polymetallic deposit

表3道伦达坝黑云母花岗岩LA-ICP-MS锆石Hf同位素分析结果

Table 3 LA-ICP-MS zircon Hf isotopic compositions of the biotite granite in the Daolundaba

Spott(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2SEεHf(0)εHf(t)(176Hf/177Hf)itDM1(Ma)tDM2(Ma)fLu/HfDL-01DL-01-01281.30.0728840.0023080.2826660.000026-3.78.70.282666860998-0.93DL-01-02281.40.1188270.0027800.2827800.0000210.312.60.282780702796-0.92DL-01-03280.60.0528550.0012050.2827710.0000160.012.90.282771685797-0.96DL-01-04280.40.0675600.0015170.2827860.0000190.513.30.282786670773-0.95DL-01-05290.20.0494770.0011760.2827050.000016-2.410.60.282705779914-0.96DL-01-06293.30.0295000.0008600.2826710.000017-3.69.50.282671820972-0.97DL-01-07291.10.0735200.0021560.2827440.000019-1.011.60.282744743853-0.94DL-01-08294.40.0378760.0008550.2826990.000018-2.6-0.80.282699780921-0.97DL-01-09295.50.0564680.0012530.2827560.000020-0.61.20.282756708821-0.96DL-01-10289.60.0454350.0015140.2827230.000026-1.74.30.282723760885-0.95DL-01-11291.50.0705170.0024290.2827540.000024-0.65.30.282754734837-0.93DL-01-12296.90.1218080.0033240.2827580.000021-0.55.40.282758746838-0.90DL-01-13291.00.1097350.0038310.2827610.000024-0.45.30.282761752839-0.88DL-01-14290.50.0689920.0025280.2827050.000029-2.43.50.282705808927-0.92DL-01-15297.80.0720010.0015900.2827330.000021-1.44.90.282733747866-0.95DL-01-16293.30.0894350.0031380.2827830.0000260.46.20.282783705791-0.91DL-01-17292.80.0279610.0008520.2827560.000022-0.65.70.282756700818-0.97DL-01-18290.40.0646600.0018110.2827770.0000160.26.20.282777688790-0.95DL-01-19287.20.0370260.0011300.2826900.000019-2.93.20.282690799942-0.97DL-01-20294.30.0652460.0017100.2827810.0000210.36.50.282781680781-0.95DL-14DL-14-01291.90.0613040.0019590.2827850.0000220.513.10.282785679776-0.94DL-14-02293.60.0360410.0011240.2826470.000023-4.48.50.2826478601018-0.97DL-14-03296.00.0442900.0016240.2827430.000017-1.011.70.282743733848-0.95DL-14-04291.90.0321320.0008340.2827140.000016-2.111.00.282714759894-0.97DL-14-05293.10.0576140.0017500.2827260.000018-1.611.10.282726760881-0.95DL-14-06296.10.0987480.0030470.2827730.0000210.012.20.282773718808-0.91

续表3

Continued Table 3

Spott(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2SEεHf(0)εHf(t)(176Hf/177Hf)itDM1(Ma)tDM2(Ma)fLu/HfDL-14-07292.60.0598710.0018720.2827070.000019-2.310.40.282707790917-0.94DL-14-08291.70.0820620.0022990.2827790.0000210.22.00.282779694791-0.93DL-14-09288.10.0782060.0025980.2827510.000022-0.71.00.282751741845-0.92DL-14-10307.70.0176870.0005620.2826720.000016-3.53.10.282672812963-0.98DL-14-11295.90.0400340.0009990.2827150.000015-2.04.30.282715761893-0.97DL-14-12290.00.0827720.0026980.2827480.000019-0.85.00.282748748851-0.92DL-14-13303.50.0347100.0010050.2827130.000017-2.14.40.282713764894-0.97DL-14-14294.20.0236610.0007330.2826630.000016-3.92.50.282663828985-0.98DL-14-15292.30.0566820.0017780.2827820.0000190.46.40.282782680780-0.95DL-14-16287.20.0680150.0021590.2827190.000020-1.94.00.282719779899-0.93DL-14-17291.70.0333060.0009500.2826430.000016-4.61.70.2826438611024-0.97DL-14-18279.20.0445080.0011030.2827610.000019-0.45.50.282761698815-0.97DL-14-19281.90.0655610.0018500.2826990.000018-2.63.30.282699801934-0.94DL-14-20283.00.0583400.0015300.2828040.0000181.17.10.282804644740-0.95

注:εHf(0)=((176Hf/177Hf)S/(176Hf/177Hf)CHUR,0-1)×10000, fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1,εHf(t)=((176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1))/((176Hf/177Hf)CHUR,0-(176Lu/177Hf)CHUR×(eλt-1)-1) ×10000, (176Hf/177Hf)i=(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1).其中,(176Lu/177Hf)S为样品测定值,(176Lu/177Hf)CHUR=0.0332, (176Hf/177Hf)CHUR,0=0.282772 (Blichert-Toft and Albarède, 1997);t为样品形成时间,λ=1.867×10-11year-1(Soderlundetal., 2004)

图8 道伦达坝Cu-W矿黑云母花岗岩Pb同位素组成图解DMM-亏损地幔场;EMⅠ-富集地幔Ⅰ;EMⅡ-富集地幔Ⅱ;MORB-洋脊玄武岩;NHRL-北半球参考线;HIUM-高U/Pb端员;GEOCHRON-零等时线;Mantle-地幔;Lower crust-下地壳;Upper crust-上地壳Fig.8 Pb isotopic diagrams of biotite grantite in the Daolundaba Cu-W deposit

4.4 Pb同位素特征

道伦达坝矿床中黑云母花岗岩的全岩Pb同位素组成见表4,Pb同位素值较均一,变化范围较小,206Pb/204Pb介于18.416~18.766,207Pb/204Pb介于15.519~15.542,208Pb/204Pb主要在38.238~39.460;μ值变化范围在9.29~9.34,ω值变化范围在33.71~35.46。在铅构造模式图(图8)上,样品投点在上地壳演化线附近(图8a),样品点集中,沿NHRL线呈一定的线性分布趋势(图8b),显示铅可能主要来自于地壳物质。

表4道伦达坝黑云母花岗岩的铅同位素组成

Table 4 Pb isotopic compositions of Daolundaba biotite granite

样品号206Pb/204Pb2σ207Pb/204Pb2σ208Pb/204Pb2σμωDL-0118.4820.00215.5260.00238.3860.0049.3135.25DL-0218.6070.00215.5340.00238.3430.0049.3234.51DL-0318.4920.00315.5260.00238.3920.0059.3135.22DL-0418.5650.00315.5330.00238.3130.0069.3234.60DL-0518.4780.00215.5240.00138.2790.0039.3134.83DL-0618.7660.00215.5390.00138.3270.0039.3133.71DL-0718.4160.00215.5200.00138.2380.0039.3134.95DL-0818.5850.00315.5290.00238.4290.0059.3134.92DL-0918.4920.00215.5290.00238.3860.0049.3235.22DL-1018.5670.00215.5380.00238.4230.0059.3335.06DL-1118.5240.00215.5320.00138.4810.0049.3235.46DL-1218.5440.00215.5300.00138.4520.0039.3135.22DL-1318.5680.00215.5420.00238.4600.0049.3435.24DL-1418.5310.00215.5190.00138.3860.0039.2934.93

注:μ为现代测定的238U/204Pb;ω为现代测定的232Th/204Pb

图9 道伦达坝黑云母花岗岩微量元素构造环境判别图解(底图据Pearce et al., 1984)ORG-大洋中脊花岗岩;WPG-板内花岗岩;VAG-火山弧花岗岩;Syn-COLG-同碰撞花岗岩Fig.9 Diagrams of the tectonic setting of trace elements for biotite granite in Daolundaba deposit (after Pearce et al., 1984)

5 讨论

5.1 岩石类型

图10 道伦达坝黑云母花岗岩的锆石Hf同位素特征(底图据Vervoort et al., 1996)Fig.10 Hf isotopic compositions of zircons from Daolundaba biotite granite (after Vervoort et al., 1996)

道伦达坝岩体的SiO2含量为65.42%~67.41%,与澳大利亚Lachlan造山带中的S型花岗岩的SiO2平均值(69.05%)相近(Chappell and White, 1992),富Al2O3、K2O等。岩石副矿物中多见白云母,A/NCK值(1.08~1.27)基本上都大于1.1,CIPW标准矿物刚玉(Cor)含量(1.82%~4.08%)均大于1%,锶同位素初始比值较高((87Sr/86Sr)i=0.7083)(王万军等,2005),显示壳源性特点,符合典型的S型花岗岩组成特征(Chappell and White, 2001)。微量和稀土元素特征表现出的轻稀土富集、重稀土亏损型式和Eu负异常以及明显的Nb、Ta、Sr、Ti亏损的特点显示为壳源成因的火山弧花岗岩,在构造环境判别图解中,样品点也基本都在火山弧花岗岩和同碰撞花岗岩范围内(图9a, b)。东北地区显生宙花岗岩广泛发育,花岗岩类型以A型为主,其次为长英质I型花岗岩(Wuetal., 2011),S型花岗岩较少见,典型的例子如黑龙江饶河杂岩体(程瑞玉等,2006)。通常认为钨锡矿床多数与壳源重熔S型花岗岩有关(毛景文等,2008;Maoetal., 2013; Yuanetal., 2008),本次研究发现的道伦达坝Cu-W矿床S型花岗岩为大兴安岭成矿带较少见的类型,为该区钨锡矿的找矿勘察提供了借鉴。

5.2 岩浆源区特征

由于锆石的Lu-Hf同位素体系具有很高的封闭温度,锆石Hf同位素比值不会随后期部分熔融或分离结晶而变化,因此锆石εHf(t)值代表了岩浆源区的成分特征,不均一的锆石Hf同位素特征很可能指示了一个开放体系,与具有不同放射性成因Hf同位素含量的几种岩浆混合有关(周振华等,2012;Griffinetal., 2002; Kempetal., 2007; Ravikantetal., 2011)。通常认为具有正εHf(t)值的花岗质岩石来自亏损地幔或从亏损地幔中新增生的年轻地壳物质的部分熔融(隋振民等,2009),负εHf(t)通常代表古老地壳成因(吴福元等,2007)。周振华等(2012)通过对兴蒙造山带1097个岩浆岩锆石Hf同位素测试数据的系统分析研究后,发现兴安地块岩浆岩中锆石的176Hf/177Hf值较高,集中在0.282850~0.283050,εHf(t)均为正值,Hf同位素模式年龄介于0.80~0.50Ga,在εHf(t)-t图解和176Hf/177Hf-t图解中,兴安地块数据点落在球粒陨石演化线和亏损地幔演化线之间,个别点落在亏损地幔演化线之上,显示其岩浆源区主要来源于亏损地幔物质的部分熔融(周振华等,2012)。

道伦达坝样品除一个测点的εHf(t)值为负值外,其余全为正值且变化范围较大(+1.0~+13.3),二阶段Hf同位素模式年龄为1024~740Ma,在εHf(t)-t图解(图10a)和176Hf/177Hf-t图解(图10b)中,数据点均落在兴蒙造山带东段范围内,位于球粒陨石演化线和亏损地幔演化线之间,反映其源区物质为显生宙期间从亏损地幔新增生的年轻地壳物质。同时,Pb同位素的特征也显示其主要源自于上地壳物质。此外,与兴安地块Hf同位素特征相比较,道伦达坝样品的176Hf/177Hf比值(0.282643~0.282804)偏低,二阶段Hf同位素模式年龄偏大,这可能与侵位过程中受到残存的古老地壳基底或岩石圈地幔的混染作用有关(Zhuetal., 2011)。因此,可以推测道伦达坝黑云母花岗岩主要来源从亏损地幔新增生的年轻地壳的部分重熔,在侵位过程中可能受到了残留的古地壳或岩石圈地幔的混染。

5.3 古生代构造演化与成矿

古亚洲成矿域由西伯利亚地台南缘活动带和塔里木-华北地台北缘活动带组成,其从天山-阿尔泰向东延伸至我国东北地区,以大规模的岛弧体系发育和陆缘增生为主要特征(任纪舜等,1999)。兴蒙造山带是古亚洲洋演化、闭合的产物,隶属古亚洲成矿域,由于燕山期大规模成岩成矿作用的叠加和改造,古生代形成的岩体或矿床大多数已经解体或被改造(陈衍景等,2009)。近年来,随着同位素年代的精确测定,开始陆续识别出兴蒙造山带古生代成矿可能是一次重要的成矿事件。从晚元古代开始,兴蒙造山带内的一系列地块开始拼合,以贺根山-嫩江带为界,分为东部区和西部区。东部区表现为佳木斯地块与松嫩地块、松嫩地块与锡林浩特地块之间的拼合,三个地块在早古生代末期拼合为一体,从而形成了东部区的锡林浩特-松嫩-佳木斯微板块(李双林和欧阳自远,1998);西部区表现为中亚蒙古地块与兴安地块之间的拼合,与该构造带拼合作用有关的钙碱系列中酸性岩浆岩的同位素年龄为443~567Ma(李春昱等,1982),这次拼合作用的结果使得中亚蒙古地块与兴安地块成为一体,构成了西部区的中亚蒙古-兴安微板块。伴随着兴蒙造山带内微板块的拼合,形成了一套岛弧背景的斑岩-矽卡岩型铜钼金(铁)矿床,如白乃庙斑岩型铜金(钼)矿床(花岗闪长斑岩SHRIMP锆石U-Pb年龄445±6.0Ma;辉钼矿的Re-Os年龄445.0±3.4Ma,据Lietal., 2012)、多宝山斑岩型铜(钼)矿床(花岗闪长岩LA-ICP-MS锆石U-Pb年龄479±2.0Ma,辉钼矿Re-Os等时线年龄479.0±3.9Ma,据武广等未发表数据)。前人(武广等,2005;Liuetal., 2012; 佘宏全等,2012)研究认为大兴安岭早古生代斑岩型矿床形成于洋壳俯冲有关的岛弧环境,随着俯冲加剧,大量花岗质岩石发生同熔和重熔作用,并沿着若干伸展部位上升侵位,在近地表附近形成斑岩型流体成矿系统,伴随着温压下降,岩浆流体萃取岛弧火山岩及其自身的金属元素沉淀下来,最终形成斑岩型铜(钼-金)矿床(葛文春等,2007;白令安等,2012;Zengetal., 2013a)。最近,我们还获得大兴安岭北段罕达盖矽卡岩型铁铜矿床石英二长闪长岩的LA-ICP-MS锆石U-Pb年龄为319.00±0.90Ma(周振华等,未发表数据),其形成与晚泥盆世-早石炭世古亚洲洋向蒙古板块和华北板块发生双向俯冲、消减作用有关。

研究表明,晚古生代之前东北地区各地块已经完成拼合,从晚古生代开始就进入了统一的盖层演化阶段(刘永江等,2010)。晚古生代古亚洲洋俯冲增生阶段,在兴蒙造山带形成了一系列的俯冲增生-变质杂岩和零星分布其中的蛇绿混杂岩套(范蔚茗等,2008;Wildeetal., 2000; 王颖等,2006),西伯利亚板块南缘由北向南逐渐俯冲增生过程中发育有大量高钾钙碱性岩浆岩,形成大量斑岩-矽卡岩-热液脉型铜钼金多金属矿床,如准苏吉花斑岩型钼矿(似斑状花岗岩SHRIMP锆石U-Pb年龄为298.2±3.1Ma,辉钼矿Re-Os等时线年龄298.1±3.6Ma,刘翼飞等,2012)、毕力赫斑岩型金矿(含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄260~258Ma,Yangetal., 2013)、奥尤特矽卡岩型铜锌矿(绢云母Ar-Ar坪年龄286.5±1.8Ma,张万益等,2008)、代铜山热液脉型铜矿(细粒花岗岩SHRIMP锆石U-Pb年龄265±5Ma,Zhouetal., 2013)、好力宝斑岩型铜钼矿(花岗斑岩LA-ICP-MS锆石U-Pb年龄267±1.0Ma,辉钼矿Re-Os年龄264.7±2.8Ma,Zengetal., 2013b)等。晚古生代铜钼金矿化除形成于岛弧环境外(Zengetal., 2013b),还可形成于活动大陆边缘环境,如毕力赫金矿,其赋矿围岩具有安底斯型活动大陆边缘岩石的特征(卿敏等,2012)。由内蒙古向西延伸至蒙古国境内,晚古生代时期发育有欧玉陶勒盖、查干苏布尔加等特大型斑岩铜(钼-金)矿床(Wainwrightetal., 2011; Khashgereletal., 2006; Watanabe and Stein, 2000; Lamb and Cox, 1998)。本次研究发现道伦达坝热液脉型铜钨锡矿床黑云母花岗岩LA-ICP-MS锆石U-Pb年龄292.1±0.84Ma~292.5±0.88Ma,为早二叠世西伯利亚板块南缘俯冲增生背景下的产物。结合以上论述,笔者认为古生代是兴蒙造山带的一个重要的成矿阶段,在此期间形成一套岛弧或活动大陆边缘环境下的斑岩-矽卡岩-热液脉型铜钼金多金属矿床,具有良好的找矿前景。

6 结论

(1)道伦达坝黑云母花岗岩的SiO2含量为65.42%~67.41%,富钾(K2O=3.82%~4.38%),富铝(Al2O3=15.24%~16.47%),属高钾钙碱性系列。A/NCK值为1.08~1.27,CIPW标准矿物刚玉(Cor)含量较高,变化范围在1.82%~4.08%之间,属于过铝质S型花岗岩;

(2)LA-ICP-MS锆石U-Pb测年结果显示,2件黑云母花岗岩样品的年龄分别为292.1±0.84Ma~292.5±0.88Ma,为早二叠世西伯利亚板块南缘俯冲增生背景下的产物;

(3)Hf同位素特征表明,道伦达坝黑云母花岗岩εHf(t)值介于-0.8~+13.3之间,二阶段Hf同位素模式年龄为1024~740Ma,176Hf/177Hf比值变化范围为0.282643~0.282804;Pb同位素组成较均一,206Pb/204Pb介于18.416~18.766,207Pb/204Pb介于15.519~15.542,208Pb/204Pb主要在38.238~39.460。黑云母花岗岩主要源自从亏损地幔新增生的年轻地壳的部分重熔,在侵位过程中可能受到了残留的古地壳或岩石圈地幔的混染。

(4)古生代(480~260Ma左右)是兴蒙造山带的一个重要的成矿阶段,成矿以岛弧或活动大陆边缘环境下的斑岩-矽卡岩-热液脉型铜钼金多金属矿床为主。

致谢野外地质工作期间得到了内蒙古第十地质矿产勘查开发院鲁斌工程师的大力协助;论文成文过程中得到了中国地质科学院矿产资源研究所毛景文研究员的悉心指导和袁顺达副研究员的热情帮助;室内测试工作得到了郭春丽副研究员的热情指导;在此一并表示诚挚的谢意!

Amelin Y, Lee DC, Halliday AN and Pidgeon RT. 1999. Nature of the earth’s earliest crust from hafnium isotopes in single detrial zircons. Nature, 399(6733): 252-255

Bai LA, Sun JG, Zhang Y, Han SJ, Yang FC, Men LJ, Gu AL and Zhao KQ. 2012. Genetic type, mineralization epoch and geodynamical setting of endogenous copper deposits in the Great Xing’an Range. Acta Petrologica Sinica, 28(2): 468-482 (in Chinese with English abstract)

Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258

Chappell BW and White AJR. 1992. I- and S-type granites in the Lachlan fold belt. Transactions of the Royal Society of Edinburgh (Earth Sciences), 83(1-2): 1-26

Chappell BW and White AJR. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489-499

Chen RK. 2009. The research on the geological features and metallogenic prediction of Daolundaba copper-polymetallic. Master Degree Thesis. Changsha: Central South University, 1-67 (in Chinese with English summary)

Chen YJ, Zhai MG and Jiang SY. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrologica Sinica, 25(11): 2695-2726 (in Chinese with English abstract)

Cheng RY, Wu FY, Ge WC, Sun DY, Liu XM and Yang JH. 2006. Emplacement age of the Raohe complex in eastern Heilongjiang Province and the tectonic evolution of the eastern part of northeastern China. Acta Petrologica Sinica, 22 (2): 353-376 (in Chinese with English abstract)

Compston W, Williams IS and Meyer CE. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research, 89(S02): 525-534

Elhlou S, Belousova E, Griffin WL and Pearson NJ. 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim. Cosmochim. Acta, 70(18): A158

Fan WM, Guo F, Gao XF and Li CW. 2008. Sr-Nd isotope mapping of Mesozoic igneous rocks in NE China: Constraints on tectonic framework and crustal growth. Geochimica, 37(4): 361-372 (in Chinese with English abstract)

Ge WC, Wu FY, Zhou CY and Zhang JH. 2007. Ages and its geodynamic implication of the porphyry Cu-Mo deposits in the eastern Xingmeng orogenic belt. Chinese Science Bulletin, 50(20): 2407-2417 (in Chinese)

Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma genesis, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269

Hofmann AW. 1988. Chemical differentiation of the earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planetary Science Letters, 90(3): 297-314

Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solidstate recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439

Hou KJ, Li YH, Zhou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract)

Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion couting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)

Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM and Whitehouse MJ. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980-983

Khashgerel B, Rye Robert OJ, Hedenquist W and Kavalieris I. 2006. Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system, South Gobi, Mongolia. Economic Geology, 101(3): 503-522

Knudsen TL, Griffin WL, Hartz EH, Andresen A and Jackson SE. 2001. In-situ hafnium and lead isotope analyses of detrital zircon from the Devonian sedimentary basin of NE Greenland: A record of repeated crustal reworking. Contributions to Mineralogy and Petrology, 141(1): 83-94

Lamb MA and Cox D. 1998. New40Ar/39Ar age data and implications for porphyry copper deposits of Mongolia. Economic Geology, 93(4): 524-529

Li CY, Wang K and Liu XY. 1982. Manual of Asian Tectonic Map (1/8000000). Beijing: China Map Publishing, 1-49 (in Chinese)

Li SL and Ouyang ZY. 1998. Tectonic framework and evolution of Xing’anling-Mongolian orogenic belt (XMOB) and its adjacent region. Marine Geology & Quaternary Geology, 18(3): 45-54 (in Chinese with English abstract)

Li WB, Zhong RC, Xu C, Song B and Qu WJ. 2012. U-Pb and Re-Os geochronology of the Bainaimiao Cu-Mo-Au deposit, on the northern margin of the North China Craton, central Asia orogenic belt: Implications for ore genesis and geodynamic setting. Ore Geology Reviews, 48: 139-150

Li ZX, Zhuo FH, Cui D and Li YX. 2009. Geology and genesis of the Daolundaba copper-polymetal deposit in Inner Mongolia. Geology and Resources, 18(1): 27-30 (in Chinese with English abstract)

Liu J, Wu G, Li Y, Zhu MT and Zhong W. 2012. Re-Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China. Journal of Asian Earth Sciences, 49: 300-312

Liu YF, Nie FJ, Jiang SH, Hou WR, Liang QL, Zhang K and Liu Y. 2012. Geochronology of Zhunsujihua molybdenum deposit in Sonid Left Banner, Inner Mongolia, and its geological significance. Mineral Deposits, 31(1): 119-128 (in Chinese with English abstract)

Liu YJ, Zhang XZ, Jin W, Chi XG, Wang CW, Ma ZH, Han GQ, Wen QB, Zhao YL, Wang WD and Zhao XF. 2010. Late Paleozoic tectonic evolution in Northeast China. Geology in China, 37(4): 943-951 (in Chinese with English abstract)

Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2009. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571

Ludwig KR. 2001a. ISOPLOT/EX Version 2.49: A geochronological Toolkit for Microsoft Excel. Berkley Geochronological Centre Special Publication, No. 1a

Ludwig KR. 2001b. SQUID Version 1.02: A geochronological Toolkit for Microsoft Excel. Berkley Geochronological Centre Special Publication, No. 2

Mao JW, Zhang ZH, Yu JJ and Niu BG. 2003. Geodynamic settings of Mesozoic large-scale mineralisation in North China and adjacent areas-implication from the highly precise dating of ore deposits. Sciences in China (Series D), 46(8): 838-851

Mao JW, Xie GQ, Zhang ZH, Li XF, Wang YT, Zhang CQ and Li YF. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English abstract)

Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB and Chen YC. 2008. Spatial-temporal distribution of Mesozoic ore deposits in south China and their metallogenic settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract)

Mao JW, Cheng YB, Chen MH and Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267-294

Mao JW, Zhou ZH, Wu G, Jiang SH, Liu CL, Li HM, Ouyang HG and Liu J. 2013. Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas. Mineral Deposits, 32(4): 715-729 (in Chinese with English abstract)

Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24

Nasdala L, Hofmeister W, Norber Netal. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265

Ouyang HG, Mao JW and Santosh M. 2013. Anatomy of a large Ag-Pb-Zn deposit in the Great Xing’an Range, Northeast China: Metallogeny associated with Early Cretaceous magmatism. International Geology Review, 55(4): 411-429

Pan XF, Wang S, Hou ZQ, Tong Y, Xue HM, Zhou XW and Xie YL. 2009. Geology and metallogenesis of Daolundaba copper polymetallic deposits, Inner Mongolia. Geotectonica et Metallogenia, 33(3): 402-410 (in Chinese with English abstract)

Patchett PJ, Kouvo O, Hedge CE and Tatsumoto M. 1981. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 78(3): 279-297

Qing M, Tang MG, Ge LS, Han XJ, Feng JB, Yuan SS and Zhao YS. 2012. LA-ICP-MS zircon U-Pb age, geochemistry of andesite in Bilihe goldfield, Suniteyouqi, Inner Mongolia and its tectonic significance. Acta Petrologica Sinica, 28(2): 514-524 (in Chinese with English abstract)

Ravikant V, Wu HY and Ji WQ. 2011. U-Pb age and Hf isotopic constraints of detrital zircons from the Himalayan foreland Subathu sub-basin on the Tertiary palaeogeography of the Himalaya. Earth and Planetary Science Letters, 304(3-4): 356-368

Ren JS, Niu BG and Liu ZG. 1999. Soft collision, superposition orogeny and polycyclic suturing. Earth Science Frontiers, 6(3): 85-93 (in Chinese with English abstract)

Shao JA, Zhang FQ and Mu BL. 1998. Mesozoic tectonic thermal evolution of the middle-southern Great Xing’an Range. Sciences in China (Series D), 28(3): 193-200 (in Chinese)

She HQ, Li JW, Guan JD, Zhang DQ, Yang YC, Tan G and Zhang B. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrologica Sinica, 28(2): 571-594 (in Chinese with English abstract)

Sláma J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar J M, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35

Soderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324

Sui ZM, Ge WC, Wu FY, Xu XC and Zhang JH. 2009. Hf isotopic characteristics and geological significance of the Chahayan pluton in northern Daxing’anling Mountains. Journal of Jilin University (Earth Science Edition), 39(5): 849-867 (in Chinese with English abstract)

Sun SS and McDonough F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Special Publications Geological Society London, 42: 313-345

Vervoort JD, Pachelt PJ, Gehrels GE and Nutman AP. 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature, 379(6566): 624-627

Wainwright AJ, Tosdal RM, Wooden JL, Mazdab FK and Friedman RM. 2011. U-Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu-Au district, southern Mongolia. Gondwana Research, 19(3): 764-787

Wang WJ, Sun ZJ and Hu XZ. 2005. Geological characters and tectonic setting of Qianjingchang granite in Inner Mongolia. Geology and Prospecting, 41(2): 35-40 (in Chinese with English abstract)

Wang Y, Zhang FQ, Zhang DW, Miao LC, Li TS, Ruan JQ, Meng QR and Liu DY. 2006. SHRIMP zircon U-Pb age of the epidiorite in Songliao basin and its geological significance. Chinese Science Bulletin, 51(15): 1811-1816 (in Chinese)

Watanabe Y and Stein H. 2000. Re-Os ages for the Erdenet and Tsagaanporphyry Cu-Mo deposits, Mongolia, and tectonic implication. Economic Geology, 95: 1537-1542

Wilde SA, Zhang XZ and Wu FY. 2000. Extension of a newly identified 500Ma metamorphic terrane in North East China: Further U-Pb SHRIMP dating of the Mashan complex, Heilongjiang Province, China. Tectonophysics, 328(1-2): 115-130

Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotope systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)

Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30

Wu G, Sun FY, Zhao CS, Li ZT, Zhao AL, Pang QB and Li GY. 2005. Discovery and geological significance of the early Paleozoic post-collision granite in the north of Eergu’na block. Chinese Science Bulletin, 50(20): 2278-2288 (in Chinese)

Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22(6): 1-20

Xie GQ, Zhao HJ, Zhao CS Li XQ, Hou KJ and Pan HJ. 2009. Re-Os dating of molybdenite from Tonglüshan ore district in southeastern Hubei Province, Middle-Lower Yangtze River belt and its geological significance. Mineral Deposits, 28(3): 227-239 (in Chinese with English abstract)

Xu JJ, Lai Y, Cui D, Chang Y, Jiang L, Shu QH and Li WB. 2009. Characteristics and evolution of ore-forming fluids of the Daolundaba copper-polymetal deposit, Inner Mongolia. Acta Petrologica Sinica, 25(11): 2957-2972 (in Chinese with English abstract)

Yang ZM, Chang ZS and Hou ZQ. 2013. Tectonic setting and source of the magmatic Au deposit at Bilihe, China: Evidence from geochronology and geochemistry of main intrusions in the deposit. Economic Geology, accepted

Yuan SD, Peng JT, Shen NP, Hu RZ and Dai TM. 2007.40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in southern Hunnan, China and its geological implications. Acta Geologica Sinica, 81(2): 278-286

Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382

Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242

Zeng QD, Liu JM, Chu SX, Wang YB, Sun Y, Duan XX, Zhou LL and Qu WJ. 2013a. Re-Os and U-Pb geochronology of the Duobaoshan porphyry Cu-Mo-(Au) deposit, Northeast China, and its geological significance. Journal of Asian Earth Sciences, 79(Part B): 895-909

Zeng QD, Sun Y, Duan XX and Liu JM. 2013b. U-Pb and Re-Os geochronology of the Haolibao porphyry Mo-Cu deposit, NE China: Implications for a Late Permian tectonic setting. Geological Magazine, 150(6): 975-985

Zhang WY, Nie FJ, Liu Y, Jiang SH, Xu DQ and Guo LJ. 2008.40Ar-39Ar geochronology of the Aououte Cu-Zn deposit in Inner Mongolia and its significance. Acta Geoscientica Sinica, 29(5): 592-598 (in Chinese with English abstract)

Zhou ZH, Lv LS, Yang YJ and Li T. 2010a. Petrogenesis of the Early Cretaceous A-type granite in the Huanggang Sn-Fe deposit, Inner Mongolia: Constraints from zircon U-Pb dating and geochemistry. Acta Petrologica Sinica, 26(12): 3521-3537 (in Chinese with English abstract)

Zhou ZH, Lü LS, Feng JR, Li C and Li T. 2010b. Molybdenite Re-Os ages of Huanggang skarn Sn-Fe deposit and their geological significance, Inner Mongolia. Acta Petrologica Sinica, 26(3): 667-679 (in Chinese with English abstract)

Zhou ZH, Mao JW and Lyckberg P. 2012. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting. Journal of Asian Earth Sciences, 49: 272-286

Zhou ZH, Wu XL and Ouyang HG. 2012. LA-ICP-MS zircon U-Pb dating and Hf isotope study of the plagioclase granite porphyry in the Lianhuashan Cu-Ag deposit of Inner Mongolia and its geological significance. Geology in China, 39(6): 1472-1485 (in Chinese with English abstract)

Zhou ZH, Li BY, Wang AS, Wu XL, Ouyang HG and Feng JR. 2013. Zircon SHRIMP U-Pb dating and geochemical characteristics of Late Variscan granites of the Daitongshan copper deposit and Lamahanshan polymetallic-silver deposit, southern Daxing’anling, China. Journal of Earth Science, 24(5): 772-795

Zhu DC, Zhao ZD, Niu YL, Dilek Y and Mo XX. 2011. Lhasa terrane in southern Tibet came from Australia. Geology, 39(8): 727-730

附中文参考文献

白令安, 孙景贵, 张勇, 韩世炯, 杨凤超, 门兰静, 古阿雷, 赵克强. 2012. 大兴安岭地区内生铜矿床的成因类型、成矿时代与成矿动力学背景. 岩石学报, 28(2): 468-482

程若坤. 2009. 内蒙古西乌珠穆沁旗道伦达坝铜多金属矿床地质特征与成矿预测研究. 硕士学位论文. 长沙: 中南大学, 1-67

陈衍景, 翟明国, 蒋少涌. 2009. 华北大陆边缘造山过程与成矿研究的重要进展和问题. 岩石学报, 25(11): 2695-2726

程瑞玉, 吴福元, 葛文春, 孙德有, 柳小明, 杨进辉. 2006. 黑龙江省东部饶河杂岩的就位时代与东北东部中生代构造演化. 岩石学报, 22(2): 353-376

范蔚茗, 郭锋, 高晓峰, 李超文. 2008. 东北地区中生代火成岩Sr-Nd同位素区划及其大地构造意义. 地球化学, 37(4): 361-372

葛文春, 吴福元, 周长勇, 张吉衡. 2007. 兴蒙造山带东段斑岩型Cu-Mo矿床成矿时代及其地球动力学意义. 科学通报, 52(20): 2407-2417

侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS 锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604

侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492

李春昱, 王荃, 刘雪亚. 1982. 亚洲大地构造图(1/800万)说明书. 北京: 中国地图出版社, 1-49

李双林, 欧阳自远. 1998. 兴蒙造山带及邻区的构造格局与构造演化. 海洋地质与第四纪地质, 18(3): 45-54

李振祥, 周福华, 崔栋, 李月新. 2009. 内蒙古道伦达坝铜多金属矿矿床地质特征及成因初探. 地质与资源, 18(1): 27-30

刘翼飞, 聂凤军, 江思宏, 侯万荣, 梁清玲, 张可, 刘勇. 2012. 内蒙古苏尼特左旗准苏吉花钼矿床成岩成矿年代学及其地质意义. 矿床地质, 31(1): 119-128

刘永江, 张兴洲, 金巍, 迟效国, 王成文, 马志红, 韩国卿, 温泉波, 赵英利, 王文弟, 赵喜峰. 2010. 东北地区晚古生代区域构造演化. 中国地质, 37(4): 943-951

毛景文, 张作衡, 余金杰, 王义天, 牛宝贵. 2003. 华北及邻区中生代大规模成矿的地球动力学背景: 从金属矿床年龄精测得到启示. 中国科学(D辑), 33(4): 289-299

毛景文, 谢桂青, 张作衡, 李晓峰, 王义天, 张长青, 李永峰. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169-188

毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526

毛景文, 周振华, 武广, 江思宏, 刘成林, 李厚民, 欧阳荷根, 刘军. 2013. 内蒙古及邻区矿床成矿规律与成矿系列. 矿床地质, 32(4): 715-729

潘小菲, 王硕, 侯增谦, 童英, 薛怀民, 周喜文, 谢玉玲. 2009. 内蒙古道伦达坝铜多金属矿床特征研究. 大地构造与成矿学, 33(3): 402-410

卿敏, 唐明国, 葛良胜, 韩先菊, 冯建兵, 袁士松, 赵玉锁. 2012. 内蒙古苏右旗毕力赫金矿区安山岩LA-ICP-MS锆石U-Pb年龄、元素地球化学特征及其形成的构造环境. 岩石学报, 28(2): 514-524

任纪舜, 牛宝贵, 刘志刚. 1999. 软碰撞、叠覆造山和多旋回缝合作用. 地学前缘, 6(3): 85-93

邵济安, 张履桥, 牟保磊. 1998. 大兴安岭中南段中生代的构造热演化. 中国科学(D辑), 28(3): 193-200

佘宏全, 李进文, 向安平, 关继东, 杨郧城, 张德全, 谭刚, 张斌. 2012. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系. 岩石学报, 28(2): 571-594

隋振民, 葛文春, 吴福元, 徐学纯, 张吉衡. 2009. 大兴安岭北部察哈彦岩体的Hf同位素特征及其地质意义. 吉林大学学报(地球科学版), 39(5): 849-867

王万军, 孙振家, 胡祥昭. 2005. 内蒙古前进场花岗岩体的地质特征及其构造环境. 地质与勘探, 41(2): 35-40

王颖, 张福勤, 张大伟, 苗来成, 李铁胜, 颉颃强, 孟庆任, 刘敦一. 2006. 松辽盆地南部变闪长岩SHRIMP锆石U-Pb年龄及其地质意义. 科学通报, 51(15): 1811-1816

吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf 同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220

武广, 孙丰月, 赵财胜, 李之彤, 赵爱琳, 庞庆帮, 李广远. 2005. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义. 科学通报, 50(20): 2278-2288

谢桂青, 赵海杰, 赵财胜, 李向前, 侯可军, 潘怀军. 2009. 鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉钼矿Re-Os同位素年龄及其地质意义. 矿床地质, 28(3): 227-239

徐佳佳, 赖勇, 崔栋, 常勇, 蒋林, 舒启海, 李文博. 2009. 内蒙古道伦达坝铜多金属矿床成矿流体特征及其演化. 岩石学报, 25(11): 2957-2972

张万益, 聂凤军, 刘妍, 江思宏, 许东青, 郭灵俊. 2008. 内蒙古奥尤特铜-锌矿床绢云母40Ar-39Ar同位素年龄及地质意义. 地球学报, 29(5): 592-598

周振华, 吕林素, 杨永军, 李涛. 2010a. 内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因: 锆石U-Pb年代学和岩石地球化学制约. 岩石学报, 26(12): 3521-3537

周振华, 吕林素, 冯佳睿, 李超, 李涛. 2010b. 内蒙古黄岗夕卡岩型锡铁矿床辉钼矿Re-Os年龄及其地质意义. 岩石学报, 26(3): 667-679

周振华, 武新丽, 欧阳荷根. 2012. 内蒙古莲花山铜银矿斜长花岗斑岩LA-MC-ICP-MS锆石U-Pb测年、Hf同位素研究及其地质意义. 中国地质, 39(6): 1472-1485

猜你喜欢

黑云母锆石同位素
花岗岩中黑云母矿物学特征及其地质意义
锆石的成因类型及其地质应用
黑云母的标型特征简述
黑云母温压计在岩浆系统中的适用性研究
俄成功试射“锆石”高超音速巡航导弹
《同位素》变更为双月刊暨创刊30周年征文通知
西准噶尔乌尔禾早二叠世中基性岩墙群LA-ICP-MS锆石U-Pb测年及构造意义
红石泉伟晶状白岗岩型铀矿黑云母特征及成矿作用*
《同位素》(季刊)2015年征订通知
硼同位素分离工艺与生产技术