APP下载

新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究**

2014-03-14刘锋曹峰张志欣李强LIUFengCAOFengZHANGZhiXinandLIQiang

岩石学报 2014年1期
关键词:阿尔泰造山黑云母

刘锋 曹峰 张志欣 李强LIU Feng, CAO Feng, ZHANG ZhiXin and LI Qiang

1. 国土资源部成矿作用与资源评价重点实验室,中国地质科学院矿产资源研究所,北京 1000372. 新疆地矿局地球物理化学探矿大队,昌吉 8311003. 中国科学院新疆生态与地理研究所,新疆矿产资源研究中心,乌鲁木齐 830011 1. MRL Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China2. Geophysical and Geochemical Party, Xinjiang Bureau of Geology and Mineral Resource Exploration and Development, Changji 831100, China3. Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China2013-08-25 收稿, 2013-12-08 改回.

1 引言

阿尔泰造山带是中亚造山带(CAOB)的一部分。在中国新疆境内阿尔泰,大面积出露侵入岩尤其是花岗岩类是其显著特征之一。这些花岗岩类岩石类型众多,具有多时代、多类型、多成因、形成于多种构造环境的特征(王广耀和许培春,1983;芮行健和吴玉金,1984;邹天人等, 1988;刘伟,1990;岳永君等,1990;赵振华等,1993;王中刚等,1998;袁峰等,2001;王登红等,2002;Wangetal., 2006; Zhuetal., 2006;张招崇等,2006;Yuanetal., 2007;周刚等,2007;杨富全等,2008;刘锋等,2009,2010,2012a;柴凤梅等,2010;张超等,2013)。从目前较可靠的同位素资料来看,新疆阿尔泰花岗岩类形成的主要时期在中奥陶世-早中泥盆世,为同造山花岗岩。最老的花岗岩侵入于460Ma左右(Wangetal., 2006; 刘锋等,2008;柴凤梅等,2010)。岩石成因类型为“I”型和“S”型,并伴随有基性岩浆侵入活动(Wangetal., 2006;陈汉林等,2006;童英等,2007),反映了阿尔泰同造山作用早期陆弧环境下的岩浆活动特征(Wangetal., 2006)。二叠纪花岗岩一般岩体规模较小,多为小岩株、岩脉,岩石成因类型有“I”型、“S”型及“I-A”型(王涛等,2005;童英等,2006;周刚等,2007)。三叠纪以来的岩浆侵入活动相对报道较少。

可可托海矿区内侵入岩非常发育,尤其是花岗岩类,出露面积超过50%。前人针对区内岩浆活动的研究主要集中在伟晶岩脉及其稀有金属矿化,如对3号伟晶岩脉形成时限的研究已有大量结果发表,同时也产生不同认识。邹天人等(1986)利用K-Ar、Rb-S法获得16件3号伟晶岩脉不同矿物组合结构带的时代由120~332Ma变化,认为3号伟晶岩脉的结晶始于早石炭世,一直持续到了燕山期。陈富文等(1999)、王登红等(2002)根据3个结构带的40Ar-39Ar年龄(178Ma、169Ma、148Ma)认为3号伟晶岩脉形成于燕山期。朱永峰和曾贻善(2002)获得Ⅰ带全岩和白云母238Ma的Rb-Sr等时线年龄。Zhuetal.(2006)获得3号脉边缘带中全岩、白云母和磷灰石样品218Ma的Rb-Sr等时线年龄,认为3号脉于218Ma开始结晶,一直持续到148Ma左右。Wangetal. (2007) 则利用SHRIMP锆石U-Pb法获得Ⅰ带、Ⅴ带、Ⅶ带(220±9Ma、198±7Ma、213±6Ma)的年龄。由于早期测年方法的局限性、本区岩石变形变质特点以及伟晶岩中锆石蚀变特征,造成了利用上述方法获得的有关年龄结果变化太大、无规律、精度也较差,因此很难准确界定3号伟晶岩脉的形成时限(刘锋等,2012b)。最近获得的3号脉边缘带中辉钼矿精确的Re-Os年龄基本解决了3号伟晶岩的形成下限问题(刘锋等,2012b)。

相对而言,区内其它多数侵入岩的成岩时代、岩浆形成构造环境和演化等方面的研究较为欠缺,仅少量辉长岩体、花岗岩(邹天人等, 1988; Liuetal., 1997; Wangetal., 2006; Zhuetal., 2006)等的相关研究见诸报端,如SHRIMP U-Pb年龄为409Ma 的3号脉围岩变质辉长岩体(Wangetal., 2006);还如阿拉尔黑云母花岗岩等的年龄多为K-Ar、Rb-Sr等方法获得(刘伟,1993;Liuetal., 1997; Zhuetal., 2006),精度相对较差。我们对区内出露的主要花岗岩体开展工作,目的是确定区内岩浆演化时限、构造环境以及寻找3号伟晶岩脉的花岗质母岩体。野外调查过程中,在3号伟晶岩脉矿坑东侧附近发现有中粗粒似斑状花岗岩小露头,与东部泥盆纪大花岗岩基并不相连,岩性和岩相特征却与矿区东北部的阿拉尔黑云母花岗岩非常相似。它是否和阿拉尔花岗岩为同期岩体?是否为3号伟晶岩脉的花岗质母岩?本期岩浆侵入和阿尔泰造山带区域岩浆活动关系如何?诸如此类问题需要我们利用精确的定年方法、岩石地球化学分析和同位素示踪以及区域对比进行研究、解决,探讨岩浆物源、构造环境以及形成过程,为区内伟晶岩的花岗母岩的寻找、岩浆活动演化特征乃至阿尔泰造山带演化规律的总结提供约束资料。

图1 阿尔泰造山带区域构造图(a)、阿尔泰造山带构造划分(b,据何国琦等,2004)和可可托海区域地质简图(c,据邹天人和李庆昌,2006)Fig.1 Geographic position of Altay orogen in China (a), tectonic subdivisions of the Altay orogen (b, after He et al., 2004) and simplified geological map of Keketuohai area (c, after Zou and Li, 2006)

2 区域地质

中亚造山带(CAOB)是一个经过长期连续的俯冲-增生过程而形成的造山带(Rotarashetal., 1982; Coleman 1989; Mossakovskyetal., 1993;Zhuetal., 2006;Wangetal., 2006; Windleyetal., 2007; Maoetal., 2008, 2013; Xiaoetal., 2010)。阿尔泰造山带是其重要组成部分(Sengöretal., 1993; Yakubchuketal., 2003)(图1a),经历了新元古代晚期到早古生代早期的稳定大陆边缘阶段(何国琦等, 1990),以及古生代时期的地壳双向增生:早古生代为洋壳俯冲阶段,奥陶世(460Ma)开始转变为活动陆缘(Wangetal., 2006; 袁超等, 2007),逐渐发育成典型的沟-弧-盆体系,晚泥盆世以后发生弧-陆碰撞作用,在早石炭世基本形成阿尔泰造山带的构造格架(何国琦等, 1994; Windleyetal., 2002; Lietal., 2003; Xiaoetal., 2004; 王涛等, 2005)。

图2 黑云母二长花岗岩野外特征(a)和镜下特征(b)Q-石英;Pl-斜长石;Mc-微斜长石;Bt-黑云母;Ms-白云母Fig.2 Field photograph (a) and photomicrograph in polarized light (b) of the biotite monzongranite

阿尔泰造山带位于西伯利亚板块和哈萨克斯坦-准噶尔板块之间(图1b)。其南以额尔齐斯大断裂为界与哈萨克-准噶尔板块相接,以北为西伯利亚板块。由北向南,中国境内阿尔泰造山带划分为北阿尔泰晚古生代陆缘活动带的诺尔特泥盆纪-石炭纪上叠火山-沉积盆地、喀纳斯-可可托海古生代岩浆弧,南阿尔泰晚古生代活动陆缘的克兰泥盆纪-石炭纪弧后盆地、卡尔巴-纳雷姆石炭纪-二叠纪岩浆弧、西卡尔巴石炭纪弧前盆地以及额尔齐斯-布尔根碰撞混杂带(何国琦等,2004)。

北阿尔泰北部的诺尔特一带主要由中晚泥盆世-早石炭世火山-沉积岩组成,以“S”型为主的花岗岩侵入时代主要为志留纪、泥盆纪(袁峰等,2001)。中部喀纳斯-可可托海一带出露地层主要为早古生代深变质岩系;花岗岩类广泛分布,时代以早泥盆世为主,主要为片麻状黑云母二长花岗岩、片麻状黑云母花岗岩、黑云母花岗岩、二云母花岗岩等(邹天人和李庆昌,2006)。南阿尔泰主要由泥盆纪火山-沉积岩系组成。花岗岩类以早泥盆世为主;其次是晚石炭世、二叠纪;少数岩体形成于奥陶纪(如切木切克岩体,462Ma,Wangetal., 2006;阿巴宫岩体,462.5Ma,刘锋等,2008)。

可可托海矿区处于西伯利亚板块阿尔泰陆缘活动带北阿尔泰中部的喀纳斯-可可托海古生代岩浆弧内。区内地层变质较深,主要为震旦纪-早古生代的片麻岩、片岩等。花岗岩、伟晶岩脉分布广泛,还分布有少量早泥盆世的变质基性岩体。伟晶岩脉主要产在变质辉长岩、震旦系-下古生界的片麻岩及片岩和泥盆纪花岗岩中 (图1c)。

3 花岗岩岩相特征

本次研究的花岗岩靠近可可托海3号伟晶岩脉矿坑,位于偏东侧约100m左右。野外露头及标本上可见少量斜长石斑晶粒度达几厘米,似斑状结构,斑晶为长石,含量5%左右;岩石具弱片麻状构造,岩相特征与矿区北部的阿拉尔似斑状黑云母花岗岩相似。(图2a)。岩性为变质中粒斑状黑云母二长花岗岩,变余似斑状结构。基质矿物粒度一般2~5mm,主要由斜长石(35%)、微斜长石(25%)、石英(30%)和黑云母(10%)组成,少量白云母(1%)(图2b)。斜长石呈半自形板状,杂乱分布,发育聚片双晶,局部高岭土化、白云母化,与微斜长石接触部位见净边、蠕虫等交代结构。微斜长石呈他形粒状,部分近半自形板状,杂乱分布,轻微高岭土化,格子双晶发育,交代斜长石,内含斜长石包体。石英呈它形粒状,填隙状分布,粒内波状消光。黑云母呈片状,断续条纹状定向分布,构成似片麻状构造,少量被白云母、绿泥石、绿帘石交代。

4 样品与测试分析

4.1 样品特征

花岗岩测年以及地球化学样品采自3号脉矿坑东侧的岩体边部一带(图1c),地理坐标为N47°12′35″、E89°49′18″。岩性为似斑状黑云母二长花岗岩。采集测年样品1件,选择5件无风化蚀变的新鲜样品用于岩石地球化学和Rb、Sr、Sm、Nd同位素的测试研究。

从测年样品中挑选出的锆石颗粒在透反射光下大多为浅黄褐色,透明度较好。多数晶形完好,部分颗粒破碎;大小在150~200μm,长宽比一般从2:1到3:1;自形程度好,呈板状和柱状。多数锆石表面光滑,少数表面粗糙、有裂纹。阴极发光图像显示(图3),部分锆石晶体具后期作用形成的变质增生和蜕晶化现象。样品中的锆石晶体内部均发育较好的振荡环带结构,是典型的岩浆成因锆石。

图3 锆石阴极发光图像及测年分析点Fig.3 CL images of zircon from granite and analytical spots

4.2 分析方法

锆石U-Pb测年由中国地质科学院矿产资源研究所LA-MC-ICP-MS实验室完成。5件花岗岩样品的主量、微量和稀土元素分析由国家地质实验测试中心完成,Rb-Sr、Sm-Nd同位素分析由中国地质科学院地质研究所同位素实验室完成。

锆石U-Pb测年所用仪器为Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统。锆石定年激光剥蚀所用斑束直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。均匀锆石颗粒207Pb/206Pb、206Pb/238Pb、207Pb/235U的测试精度(2σ)均为2%左右,对锆石标准的定年精度和准确度在1%(2σ)左右。LA-MC-ICP-MS激光剥蚀采样采用单点剥蚀的方式。锆石U-Pb定年以锆石GJ-1为外标,U、Th含量以锆石M127(U=923×10-6、Th=439×10-6、Th/U=0.475)(Nasdalaetal., 2008)为外标进行校正。样品的同位素比值和元素含量计算采用ICP-MS DataCal程序处理(Nasdalaetal., 2008),对204Pb含量异常高的分析点在计算时剔除,锆石年龄谐和图用Isoplot 3.0程序(Ludwig, 2003)获得,表达式中单个数据点的误差均为1σ,加权平均年龄具95%置信度,年龄值选用206Pb/238U年龄。详细测试过程可参见侯可军等(2009)。

主量元素测试采用X射线荧光法 (XRF) (国家标准GB/T 14506.28—1993监控)在X荧光光谱仪(2100)上完成。其中FeO采用容量滴定法(国家标准GB/T 14506.14—1993监控),CO2用电导法(国家标准GB 9835—1988监控),H2O+和烧失量(LOI)用重量法(国家标准GB/T 14506.2—1993和LY/T 1253—1999标准监控)分析。微量和稀土元素测试在等离子光谱仪(IRIS)(JY/T 015—1996标准监控)和等离子质谱仪(X-series)上完成(DZ/T 0223—2001标准监控)。Rb-Sr、Sm-Nd 分析采用同位素稀释法。其中,Rb-Sr、Sm-Nd含量和Sr同位素分析利用MAT262固体同位素质谱计完成,同位素质量分馏采用88Sr/86Sr=8.37521校正;Nd同位素分析所用仪器为Nu Plasam HR MC-ICP-MS、DSN-100膜去溶,同位素质量分馏采用146Nd/144Nd=0.7219校正。

4.3 分析结果

通过锆石的透射光、反射光和阴极发光图像研究,选择表面光滑、无裂纹、无包体、环带发育的锆石颗粒用于测试。对20颗锆石进行了20次分析(图4),年龄分析结果列于表1。本次锆石测年实验过程中测得Plesovice标样的结果为339.63±0.71Ma(n=8,2σ),其年龄推荐值为337.13±0.37Ma(2σ)(Slamaetal., 2008)。误差小于1%,说明本次测年分析是准确、可信的。锆石样品中U含量变化在11.2×10-6~279.7×10-6,总体含量偏低,大多数低于100×10-6或在其附近;Th含量变化在16.3×10-6~464.8×10-6,与U含量相关性较好,集中在100×10-6~200×10-6。Th/U比值变化在0.17~1.02,均大于0.1,表明锆石为岩浆成因(Claessonetal., 2000;Belousovaetal., 2002)。1个点(3号点)年龄数据谐和度偏低,低于95%,因此不参加年龄计算。其余19个测点集中成群分布于谐和线上及附近,206Pb/238U年龄集中于399.6~409.0Ma, 加权平均年龄为405.4±1.4Ma(MSDW=0.98)(图4),可以代表该花岗岩的形成时代。

图4 花岗岩体锆石U-Pb年龄图解Fig.4 Zircon U-Pb age of granite

从主、微量元素分析结果看(表2),本次研究的花岗岩体具有富硅(SiO2=70.69%~73.81%)、富铝(Al2O3=14.00%~15.74%)、全碱含量中等(K2O+Na2O=5.98%~8.00%)特征,钾相对钠总体略偏富集(K2O/Na2O=0.78~1.61);岩石中钙含量(CaO=2.05%~2.43%)中等,低铁(Fe2O3+FeO=1.68%~2.16%)、低镁(MgO=0.35%~0.52%)、低钛(TiO2=0.18%~0.23%)以及低磷(P2O5≤0.07%)。在硅碱图解上(图5a),SiO2和K2O显示较好的负相关性,总体表现为钙碱性向高钾钙碱性过渡的特征。铝饱和指数较高(A/CNK=1.09~1.12),属于强过铝质花岗岩(A/CNK≥1.1),在A/CNK-A/NK图解(图5b)中位于过铝质区域。

岩石中高场强元素(HFSE)总体含量较高,Th变化于11.9×10-6~17.1×10-6,U在0.98×10-6~1.64×10-6之间,Zr在85×10-6~128×10-6之间,Hf在2.63×10-6~4.06×10-6之间变化;Y(34.7×10-6~48.9×10-6)含量也较高。Nb(7.05×10-6~9.24×10-6)、Ta(0.53×10-6~2.65×10-6)含量相对偏低,Nb/Ta比值变化较大(3.49~13.30,仅一个比值为3.49,其余在10~13之间)。大离子亲石元素(LILE)Rb(139×10-6~197×10-6)、Sr(112×10-6~153×10-6)等与地壳丰度相当。原始地幔标准化蛛网图(图6a)显示,各样品微量元素分布模式一致,呈现Th、K、Pb、Nd、Zr、Hf的相对正异常,Ti、P、Sr、Nb、Ta和Ba相对负异常,尤其Ti和P较低,接近原始地幔值。

岩石稀土总量较高,变化不大,ΣREE介于122×10-6~180×10-6,轻稀土相对富集(LREE/HREE=5.31~6.18,(La/Yb)N=4.0~5.48),而且分馏较明显((La/Sm)N=2.55~2.87), 重稀土仅具轻微分馏((Gd/Yb)N=1.06~1.33)。

表2花岗岩主量(wt%)、微量稀土(×10-6)元素组成

Table 2 Major (wt%) and trace (×10-6) elements data for granite

样品号KKTH10-117KKTH10-118KKTH10-119KKTH10-120KKTH10-121样品号KKTH10-117KKTH10-118KKTH10-119KKTH10-120KKTH10-121SiO273.4572.9670.6972.3073.81Al2O314.2214.2415.7414.9614.00CaO2.052.332.132.212.43Fe2O30.861.350.911.031.23FeO0.880.810.770.830.92K2O3.263.134.943.912.62Na2O3.293.113.063.063.36MgO0.370.520.350.420.49MnO0.060.050.040.050.05P2O50.040.050.050.070.06TiO20.180.230.180.190.21CO20.160.100.140.190.10H2O+0.480.620.340.440.36LOI0.630.640.530.800.60Total99.93100.1499.87100.46100.24A/NK1.591.671.511.611.67A/CNK1.121.121.101.121.09Na2O+K2O6.556.248.006.975.98Mg#0.280.310.280.300.30Rb147139181197149Ba4435201078536372Th12.614.911.91417.1U1.371.330.981.641.41Ta0.880.690.532.650.79Nb8.978.067.059.248.09Sr112143153140141Zr96.710385110128Hf3.183.432.633.614.06Li728280.867.683.1B13.476.735.724.3Be2.362.067.882.833.72Sc9.910.27.9210.510.5V20.8262227.227.2Cr10.5010.4010.2012.1013.60Co3.283.823.193.813.93Ni5.736.095.996.827.73Pb23.6022.8029.4027.1022.80Cs25.5014.6029.7012.8036.40Ga16.8017.0017.3019.1017.90Tl0.930.841.091.271.03Mo0.140.09<0.050.160.15La25.4031.6022.4024.5031.90Ce71.4068.9046.2063.0074.50Pr6.958.225.916.898.40Nd26.3032.1023.1027.1032.20Sm6.427.295.246.137.18Eu1.061.150.901.061.12Gd5.836.524.725.485.81Tb1.121.200.850.981.05Dy7.087.255.146.296.76Ho1.441.521.041.321.46Er4.584.583.134.194.57Tm0.660.640.420.550.61Yb4.564.172.933.854.26Lu0.650.60.430.540.62Y46.748.934.742.648ΣREE163.5175.7122.4151.9180.4LREE137.5149.3103.8128.7155.3HREE25.9226.4818.6623.225.14LREE/HREE5.315.645.565.556.18(La/Yb)N4.005.445.484.565.37δEu0.520.500.540.550.51

在球粒陨石标准化配分图解中(图6b),所有样品的曲线均表现出轻稀土弱富集、分馏较明显,重稀土平缓、分馏不明显的右倾型REE配分模式,且由于较明显的负铕异常(δEu=0.50~0.55)而呈现“V”型谷状。

样品Sr、Nd同位素组成列于表3。同位素计算采用的花岗岩年龄为本次测定的LA-MC-ICP-MS锆石U-Pb年龄405.4Ma。样品中87Rb/86Sr=3.323~4.867,87Sr/86Sr=0.72259~0.72810,变化不大;Sr初始值较低,4件样品变化于0.70155~0.70341,有1件样品低于石质陨石的初始值(0.69897),为不合理的低值,暗示其Rb-Sr同位素体系可能受到某些扰动,因此予以剔除。Rb/Sr=1.15~1.68;147Sm/144Nd=0.1343~0.1455,143Nd/144Nd=0.51235~0.51237,变化均不大。fSm/Nd介于-0.32~-0.26,落在-0.6~-0.2之间,在地壳Sm/Nd范围内;Sm/Nd比值变化于0.222~0.240,显示分异小、较均一的Sm/Nd同位素体系。两阶段模式年龄t2DM集中在1.35Ga左右,属于中元古代;εNd(t)均为负值,变化于-3.07~-2.16。

5 讨论

5.1 花岗岩年代学

本文研究的花岗岩出露地的野外岩相特征与矿区北部的三叠纪阿拉尔花岗岩体(LA-MC-ICP-MS锆石U-Pb年龄为211Ma,Liuetal., 2014)边部特征颇为相似,因此笔者曾一度认为它可能不属于位于3号脉东部的泥盆纪英云闪长岩-花岗闪长岩-黑云母二长花岗岩复式岩体(图1c),可能是和阿拉尔黑云母花岗岩同期的小岩株。但本次精确的锆石U-Pb测年结果表明,花岗岩形成时代为405.4±1.4Ma(MSDW=0.98),属于早泥盆世岩体。显然,它比阿拉尔花岗岩的侵入时期早得多,与3号伟晶岩脉也没有成因上的联系(3号伟晶岩脉形成起始于210Ma左右;刘锋等,2012b),应属于东部复式花岗岩基的一部分,只是岩相有差异。

表3近3号脉花岗岩Sr-Nd同位素组成

Table 3 Representative Sr-Nd isotopic compositions of granite

样品号KKTH10-117KKTH10-118KKTH10-119KKTH10-120KKTH10-121Rb(×10-6)140.8121.9174.6183.8139.5Sr(×10-6)91.85106.3129.3109.5110.287Rb/86Sr4.4453.3233.9134.8673.66687Sr/86Sr0.72810.7225920.724330.7258070.722715±2σ0.0000140.0000150.0000140.0000130.000014(87Sr/86Sr)i0.702440.703410.701740.697710.70155Sm(×10-6)5.2365.7784.7594.9825.835Nd(×10-6)21.77425.46721.2421.77726.289147Sm/144Nd0.14550.13730.13550.13840.1343143Nd/144Nd0.512350.512360.512370.512350.51235±2σ0.0000050.0000080.0000060.0000080.000005εNd(t)-3.07-2.41-2.16-2.56-2.43t2DM(Ga)1.401.351.331.361.35fSm/Nd-0.26-0.30-0.31-0.30-0.32

图6 花岗岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化图解(b)(标准化值据Sun and McDonough, 1989)Fig.6 Primitive mantle-normalized trace element spider diagrams (a) and chondrite-normalized REE patterns (b) of granite (normalization values after Sun and McDonough, 1989)

以往大量的年代学研究表明,阿尔泰造山带古生代岩浆侵入活动存在四个峰值:460Ma、408Ma、375Ma和265Ma(Wangetal., 2006;曾乔松等,2007),花岗岩类分布广泛,多数形成于400Ma左右。尤其是北阿尔泰中部的喀纳斯-可可托海古生代岩浆弧内以早泥盆世侵入活动为主要特征,如铁列克岩体(403Ma)(童英等,2005)、喀纳斯岩体(398Ma)、琼库尔岩体(399Ma)(童英等,2007)、可可托海变质辉长岩(409Ma)(Wangetal., 2006)等。本文研究的花岗岩体侵入时代以及空间产出与上述一致,说明该岩体同样形成于区内岩浆活动最为强烈时期。这为阿尔泰造山带晚古生代早期强烈的岩浆活动规律提供了又一年代学证据。

5.2 岩石成因

花岗岩主要有几种地质作用形成:地幔源岩浆的结晶分异,深变质的混合岩化作用以及地壳岩石的深熔作用等(路凤香和桑隆康,2002)。一般认为,与碰撞有关的强过铝质(SP)花岗岩的源区主要是变质沉积岩(如泥质岩、砂屑岩或杂砂岩),岩石圈加厚及幔源岩浆底侵是导致下地壳熔融及长英质花岗岩产生的重要原因(Sylvester, 1998; 李鹏春等,2005;Yangetal., 2007;杨富全等,2007)。本次研究的黑云母二长花岗岩的矿物成分及组合、富硅、略富钾(总体上K2O>Na2O),贫Fe、Mg、Ti、P以及强过铝质特征表明该花岗岩属于髙钾钙碱性强过铝质(SP)花岗岩(Chappel and White, 1992),和Lachlan及欧洲海西带中变质沉积岩熔融成因的SP花岗岩类相类似(Chappel and White, 1992;Sylvester,1998)。

图7 岩体CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT)关系图(据Altherr et al., 2000)Fig.7 CaO/(MgO+FeOT) vs. Al2O3/(MgO+FeOT) diagram of the pluton (after Altherr et al., 2000)

研究表明,强过铝质花岗岩主要由富铝质的地壳岩石经过部分熔融作用形成(Green, 1995),它的Al2O3/TiO2比值大于100时指示部分熔融温度小于875℃,属于高压型,小于100时指示熔融温度大于875℃,属于高温型(Sylvester, 1998)。本次研究的花岗岩Al2O3/TiO2(62~87)比值均小于100,应属于高温型强过铝质花岗岩。另有研究表明,对于SiO2含量在67%~77%的强过铝质花岗岩,CaO/Na2O比值可以很好地指示源区物质成分,当比值>0.3时指示源区为砂岩、正变质岩,当比值<0.3时指示源区为泥岩(Sylvester, 1998)。由此推测本区黑云母二长花岗岩(CaO/Na2O比值均大于0.3)源区物质可能主要为砂岩或正变质岩。CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT)图解也显示该花岗岩为变质杂砂岩源区的部分熔融产物(图7)。偏低的FeO+Fe2O3+MgO+TiO2含量(均小于3%)及低Mg#(0.28~0.31)表明岩浆可能经历了较高程度的分异演化。

源区物质成分不同,部分熔融产生的强过铝质花岗质熔体成分特征也不同(Altherr and Siebel, 2002)。如果由云母类脱水熔融形成,其熔体会富含Rb、Cs,且K2O/Na2O比值较高;如果由角闪石脱水熔融形成,就富含Na、Ca,且K2O/Na2O比值较低(赵永久等,2007)。本区的黑云母二长花岗岩Rb、Cs含量较高,具有髙钾低钠特征,暗示该花岗岩可能与富含云母的源区脱水熔融有关。同时,岩体中Ba相对于Th、Rb亏损明显,Nd两阶段模式年龄在1.33~1.40Ga,体现了成熟度较高的陆壳岩石特征(马昌前等,2004),源区可能属于一套中元古代物质。样品中87Sr/86Sr(0.72259~0.72810)、143Nd/144Nd(0.51235~0.512367)接近于陆源沉积物,εNd(t)的负值与中亚造山带中花岗岩具有高正εNd(t)值的特征不同,可能反映了阿尔泰前寒武纪基底或微陆块的物源特征(童英等,2007),而较低Sr初始值则可能指示有幔源组分加入。

本区黑云母二长花岗岩Nb/Ta比值与地壳平均值11(Taylor and McLennan, 1985)基本相当、明显小于地幔平均值17.8(McDonough and Sun, 1995);Zr/Hf比值变化小(30.0~32.3),非常接近于地壳相应值33(Taylor and McLennan, 1985),明显不同于地幔平均值37(McDonough and Sun, 1995),说明岩石主要以地壳组分的贡献为主。但Th/U(8.5~12.1,平均10.6)明显高于地壳平均值2.8(Taylor and McLennan, 1985),Rb/Th比值(8.7~15.2,平均11.8)略高于球粒陨石比值(约8),Zr (85×10-6~128×10-6,多数>100×10-6)高于普通S型花岗岩(Zr<100×10-6,温度800℃)(Watson and Harrison, 1983),与高Zr的Lachlan和欧洲海西褶皱带的SP花岗岩(高温>875℃)较为类似。Rb/Zr(1.2~2.1)>1,也类似于海西S型浅色花岗岩(Harris and Inger, 1992),说明可能有部分幔源组分的加入。另外,微量元素原始地幔标准化图解中Ba、Sr、Nb、Ta、Ti的亏损也暗示花岗岩浆主要不是由软流圈部分熔融直接产生(Foleyetal., 1992),而可能与地壳或地壳混染有关、或源区有富含Nb、Ta、Ti的残留矿物、或有板块俯冲作用引起的岩石圈富集地幔的参与(Dunganetal., 1986)。

综上所述,本次研究的黑云母二长花岗岩具有“S”型花岗岩特征,与来源于变质沉积岩部分熔融的“S”型长英质岩石类似;可能为中元古代富含云母的变质杂砂岩在高温条件下经过部分熔融形成,但受到较多幔源组分等因素的影响。

5.3 地球动力学意义

相对而言,针对阿尔泰造山带泥盆纪岩浆活动以及构造环境的研究最为广泛、深入,但认识上也是争议最多的,有陆缘裂谷(陈毓川等,1996;王京彬等,1998)、岛弧或弧后盆地(Windleyetal., 2002; Xuetal., 2003;Xiaoetal., 2004;陈汉林等,2006;单强等,2007)、陆缘弧(Wangetal.,2006;童英等,2007;丛峰等,2007;杨富全等,2008)、陆缘伸展(Yuanetal., 2007)等的不同认识。即使如此,他们大多数的共同之处在于都认同阿尔泰晚志留世-泥盆纪处于活动大陆边缘,岩浆活动与板块俯冲有关。研究也已证明,阿尔泰造山带大致从晚寒武纪开始发生俯冲、碰撞、增生,至早石炭世才基本奠定了阿尔泰造山带的构造格架(Windleyetal., 2002; Xiaoetal., 2004; Wangetal., 2006)。本次研究的黑云母二长花岗岩与岩石圈伸展体制下强烈壳幔相互作用导致的岩浆活动不同(Xieetal., 2008; 袁顺达等,2012),其时间上、空间上的特点均说明它形成于与板块俯冲有关的活动大陆边缘环境。

图8 花岗岩的Nb-Y图解(据Pearce et al., 1984)Fig.8 Nb-Y diagram of the granite pluton(after Pearce et al., 1984)

花岗岩的形成受构造环境的影响和控制,尤其稀土及微量元素特征明显受成岩的构造环境制约。不同构造环境中形成的花岗岩/酸性火山岩的微量元素地球化学特征存在明显的不同 (Forsteretal., 1997)。本区黑云母二长花岗岩的Yb<5×10-6,绝大多数样品中Ta<1×10-6,Ta/Yb比值总体在0.5之下,表现出了与俯冲作用有关的弧岩浆作用的特点(Condie, 1986)。Sr、Ti、Ba、P、Nb、Ta等明显的负异常和Th、U、La、Zr、Hf等的正异常则与造山带弧岩浆作用形成的钙碱性系列岩石特征相符(Wilson, 1989; Rollinson,1993; Sajonaetal., 1996)。岩石稀土配分型式表现出的LREE的相对弱富集,HREE比较平坦以及Eu的中等负异常,也与弧环境下形成的酸性岩类特征相似(王中刚等,1989)。在花岗岩微量元素Y-Nb构造判别图解上(图8),所有样品均落入火山弧+同碰撞花岗岩区域。

在碰撞造山带,虽然放射性衰变可提供部分热量,但如果没有外界热能的供给,地壳熔融产生大型“S”型花岗岩岩基可能性不大(Kokonyangietal., 2004)。前人研究表明,“S”型花岗岩可以是同碰撞造山阶段挤压环境下地壳加厚而发生部分熔融的产物。在汇聚构造活动期间(碰撞或俯冲),深熔作用使地壳深部岩石尤其是富水沉积单元脱水,含水流体又润滑其周围岩石,从而引发大范围的熔融作用形成岩浆,后经岩浆的结晶分离作用产生S型花岗岩(肖庆辉,2002)。对于阿尔泰造山带而言,早泥盆世时期正处于俯冲-碰撞高峰阶段(古亚洲洋的北向俯冲、碰撞(Wangetal., 2006)),岩浆活动强烈,地壳急剧加厚。本区黑云母二长花岗岩可能正是由于这一时期强烈的俯冲-碰撞导致的地壳加厚产生大量热能,引发了阿尔泰微古陆边缘内部的深熔作用而最终形成。

6 结论

(1)本文研究的黑云母二长花岗岩的年龄为405.4±1.4Ma(MSDW=0.98),属于早泥盆世岩体。这一年代学结果可以证明该花岗岩体与3号伟晶岩脉没有成因上的联系。

(2)黑云母二长花岗岩总体趋向于髙钾钙碱性,属于高温型强过铝质(SP)花岗岩。

(3)岩石微量、稀土元素特征以及较低的Sr初始值εNd(t)均为负值等同位素特征表明该花岗岩为中元古代基底变质沉积岩经过部分熔融形成,但有较多幔源物质的参与。

(4)黑云母二长花岗岩体是在阿尔泰造山带早泥盆世时期,由于板块俯冲、碰撞引发深熔作用,促使陆缘深部岩石脱水、熔融,后上升侵位而形成,属于陆缘弧花岗岩。

Altherr R, Holl A, Hegener E, Langer C and Kreuzer H. 2000. High potassium, calc-alkaline I-type plutonism in the European variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73

Altherr R and Siebel W. 2002. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397-415

Belousova EA, Griffin WL, Oreilly SY and Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622

Chai FM, Dong LH, Yang FQ, Liu F, Geng XX and Huang CK. 2010. Geochemistry and petrogenesis of Tiemierte granites in the Kelang basin at the southern margin of Altay, Xinjiang. Acta Petrologica Sinica, 26(2): 377-386 (in Chinese with English abstract)

Chappell BW and White AJR. 1992. I and S-type granites in the Lachlan fold belt. Trans. R. Soc. Edinburgh: Earth Sci., 83(1-2): 1-26

Chen FW, Li HQ and Wang DH. 1999. New isochronology evidence for Yanshanian diagenesis and related mineralization in Altaid orogenic belt, China. Chinese Science Bulletin, 44(11): 1142-1147 (in Chinese)

Chen HL, Yang SF, Li ZL, Yuan C, Xiao WJ, Li JL, Yu X and Lin XB. 2006. Tectonic setting of mafic rocks in southern Altay orogenic belt and its geodynamic implication. Acta Petrologica Sinica, 22(1): 127-134 (in Chinese with English abstract)

Chen YC, Ye BT and Feng J. 1996. Ore-Forming Conditions and Metallogenic Prognosis of the Ashele Copper-Zinc Metallogenic Belt, Xinjiang, China. Beijing: Geological Publishing House, 33-145 (in Chinese)

Claesson S, Vetrin V, Bayanova T and Downes H. 2000. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic. Lithos, 51(1-2): 95-108

Coleman RG. 1989. Continental growth of northwest China. Tectonics, 8(3): 621-635

Condie KC. 1986. Geochemistry and tectonic setting of Early Proterozoic supracrustal rocks in the southwestern United States. Journal of Geology, 94(6): 845-864

Cong F, Tang HF and Su YP. 2007. Geochemistry and tectonic setting of Devonian rhyolites in southern Altay, Xinjiang, Northwest China. Geotectonica et Metallogenia, 31(3): 359-364 (in Chinese with English abstract)

Dungan MA, Lindstrom MM, McMiland NJetal. 1986. Open system magmatic evolution of the Taos Plateau volcanic field, northern New Mexico: 1. The petrology and geochemistry of the Servilleta basalt. J. Geophys. Res., 91(6): 5999-6028

Foley S, Amand N and Liu J. 1992. Potassic and ultrapotassic magmas and their origin. Lithos, 28(3): 182-185

Forster HJ, Tisehendorf C and Trumbull RB. 1997. An evolution of the Rb vs. (Y+Yb) discrimination diagram to infer tectonic setting of silica igneous rock. Lithos, 40: 261-293

Green TH. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3-4): 347-359

Harris NBW and Inger S. 1992. Trace element modelling of pelite-derived granites. Contrib. Mineral. Petrol., 110(1): 46-56

He GQ, Han BF and Yue YJ. 1990. The tectonic partition and crustal evolution for the Altay Orogenic Belt in China. In: Xinjiang Geological Science 2. Beijing: Geological Publishing House, 9-20 (in Chinese)

He GQ, Li MS, Liu DQetal. 1994. Paleozoic Crustal Evolution and Mineralization in Xinjiang of China. Urumuqi and Hongkong: Xinjiang People’s Publishing House and Educational and Cultural Press, 1-437 (in Chinese)

He GQ, Cheng SD, Xu X, Li JY and Hao J. 2004. An Introduction to the Explanatory Text of the Map of Tectonics of Xinjiang and Its Neighbouring Areas. Beijing: Geological Publishing House, 1-65 (in Chinese)

Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)

Kokonyangi J, Armstrong R, Kampunzu AB, Yoshida M and Okudaira T. 2004. U-Pb zircon geochronology and petrology of granitoids from Mitwaba (Katanga, Congo): Implications for the evolution of the Mesoproterozoic Kibaran belt. Precambrian Research, 132(1-2): 79-106

Li JY, Xiao WJ, Wang KZ, Sun GH and Gao LM. 2003. Neoproterozoic-Paleozoic tectonostratigraphy, magmatic activities and tectonic evolution of eastern Xinjiang, NW China. In: Mao JW, Goldfarb RJ, Seltman R, Wang DH, Xiao WJ and Hart C (eds.). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan, IAGOD Guidebook Series 10: CERCAM/NHM, London, 31-74

Li PC, Xu DR, Chen GH, Xia B, He ZL and Fu GG. 2005. Constrains of petrography, geochemistry and Sr-Nd isotopes on the Jinjing granitoids from northeastern Hunan Province, China: Implication for petrogenesis and geodynamic setting. Acta Petrologica Sinica, 21(3): 921-934 (in Chinese with English abstract)

Liu F, Li YH, Mao JW, Yang FQ, Chai FM, Geng XX and Yang ZX. 2008. The SHRIMP U-Pb ages of the Abagong granites in the Altay orogen and their geological implications. Acta Geoscientia Sinica, 29(6): 795-804 (in Chinese with English abstract)

Liu F, Yang FQ, Mao JW, Chai FM and Geng XX. 2009. Study on chronology and geochemistry for Abagong granite in Altay orogen. Acta Petrologica Sinica, 25(6): 1416-1425 (in Chinese with English abstract)

Liu F, Yang FQ, Li YH, Guo ZL, Chai FM, Geng XX and Zhang ZX. 2010. The study on chronology and geochemistry for the granite from the Serbulak iron deposit in the southern margin of Altay, in Xingjiang. Acta Geologica Sinica, 84(2): 195-205 (in Chinese with English abstract)

Liu F, Zhang C and Yang FQ. 2012a. Study on chronology of Jialbasto iron deposit and metallogeny in the southern margin in Altay. Mineral Deposits, 31(6): 1277-1288 (in Chinese with English abstract)

Liu F, Zhang ZX, Li Q, Qu WJ and Li C. 2012b. New age constraints on Koktokay Pegmatite No. 3 Vein, Altay Mountains, Xinjiang, evidence from molybdenite Re-Os dating. Mineral Deposits, 31(5): 1111-1118 (in Chinese with English abstract)

Liu F, Zhang ZX, Li Q, Zhang C and Li C. 2014. New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton. Ore Geology Reviews, 56: 209-219

Liu W. 1990. Petrogenetic epochs and peculiarities of genetic types of granitoids in the Altai Mountains, Xinjiang Uygur Autonomous Region, China. Geotectonica et Metallogenia, 14(1): 44-56 (in Chinese)

Liu W. 1993. The whole rock Rb-Sr isochron ages for the plutons in Altay Mountains in Xinjiang and the evolution of crustal activity and tectonic setting. In: The Geological Science of Xinjiang, Vol. 4. Beijing: Geological Publishing House, 35-50 (in Chinese)

Liu W, Liu CQ and Masuda A. 1997. Complex trace-element effects of mixing-fractional crystallization composite processes: Applications to the Alaer granite pluton, Altay Mountains, Xingjiang, northwestern China. Chemical Geology, 135(1-2): 103-124

Lu FX and Sang LK. 2002. Petrology. Beijing: Geological Publishing House, 1-399 (in Chinese)

Ludwig KR. 2003. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center. Special Publication, 4: 1-71

Lugmair GW and Marti K. 1978. Lunar initial143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3): 349-357

Ma CQ, Ming HL and Yang KG. 2004. An Ordovician magmatic arc at the northern foot of Dabie Mountains: Evidence from geochronology and geochemistry of intrusive rocks. Acta Petrologica Sinica, 20(3): 393-402 (in Chinese with English abstract)

Mao JW, Pirajn F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng LS, Yang JM and Zhang CQ. 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2-4): 184-203

Mao JW, Pirajno F, Lehmann B, Luo MC and Berzina A. 2013. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. Journal of Asian Earth Sciences, 79: 576-584

McDonough WF and Sun SS. 1995. The composition of the earth. Chemical Geology, 120(3-4): 223-253

Mossakovsky AA, Ruzhentsev SV, Samygin SG and Kheraskova TN. 1993. The Central Asian fold belt: Geodynamic evolution and formation history. Geotectonics, 26: 455-473

Nasdala L, Hofmeister W, Norberg N, Mattinson JM, Corfu F, Dor W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan Y, Gtze J, Hager T, Kr Ner A and Valley J. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265

Pearce JA, Harris NBL and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983

Peccerillo R and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol., 58(1): 63-81

Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263

Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: Longman Publishing Group, 174-206

Rotarash AI, Samygin S, Gredyushko YA, Keyl’man GA, Mileyev VS and Perfiliyef AS. 1982. The Devonian active continental margin in the southwest Altay. Geotectonics, 16: 31-41

Rui XJ and Wu YJ. 1984. The origin of granites in Altay, China. In: Xu KQ (ed.). The International Symposium for the Granite Geology and its Relationship with Mineralization. Nanjing: Science and Technique Publishing House of Jiangsu Province, 281-291 (in Chinese)

Sajona FG, Maury RC, Bellon H, Cotten J and Defant M. 1996. High field strength element enrichment of Pliocene-Pleistocene island-arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). J. Petrol., 37(3): 693-726

Sengör AMC, Natal’in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Asia. Nature, 364(6435): 299-307

Shan Q, Niu HC, Yu XY and Zeng QS. 2007. Geochemical characteristics, magmtic genesis and tectonic background of the Late Paleozoic high potassium and high silicon ignimbrite on the southern margin of Altaid, North Xinjiang. Acta Petrologica Sinica, 23(7): 1721-1729 (in Chinese with English abstract)

Slama J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plesovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35

Steiger RH and Jäger E. 1977. Subcommissions on geochronology: Convention on the use of decay constants in geochronology and cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362

Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29-44

Taylor SR and Mclenann SM. 1985. The Continental Crust: Its Composition and Evolution. Blackwell: Oxford Press, 1-312

Tong Y, Wang T, Hong DW, Liu XM and Han BF. 2005. Zircon U-Pb age of syn-orogenic Tielieke pluton in the western part of Altay orogenic belt and its structural implications. Acta Geoscientica Sinica, 26(Suppl.): 74-77 (in Chinese with English abstract)

Tong Y, Wang T, Koavch VP, Hong DW and Han BF. 2006. Age and origin of the Takeshiken postorogenic alkali-rich intrusive rocks in southern Altai, near the Mongolian border in China and its implications for continental growth. Acta Petrologica Sinica, 22(5): 1267-1278 (in Chinese with English abstract)

Tong Y, Wang T, Hong DW, Dai YJ, Han BF and Liu XM. 2007. Ages and origin of the Early Devonian granites from the north part of Chinese Altai Mountains and its tectonic implications. Acta Petrologica Sinica, 23(8): 1933-1944 (in Chinese with English abstract)

Wang DH, Chen YC, Xu ZG, Li TD and Fu XJ. 2002. Minerogenetic Series and Regularity of Mineralization in the Altai Metallogenetic Province, China. Beijing: Atomic Press, 1-493 (in Chinese)

Wang GY and Xu PC. 1983. Igneous rocks and related metallogeny in Altay, Xinjiang. Northwest Geology, (1): 8-21 (in Chinese)

Wang JB, Qin KZ, Wu ZL, Hu JH and Deng JN. 1998. Volcanic Exhalative Sedimentary Lead-zinc Deposits in the Southern Margin of the Altai, Xinjiang. Beijing: Geological Publishing House, 1-210 (in Chinese)

Wang T, Hong DW, Tong Y, Han BF and Shi YR. 2005. Zircon U-Pb SHRIMP age and origin of post-orogenic Lamazhao granitic pluton from Altai orogen: Its implications for vertical continental growth. Acta Petrologica Sinica, 21(3): 640-650 (in Chinese with English abstract)

Wang T, Hong DW, Jahn BM, Tong Y, Wang YB, Han BF and Wang XX. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen. The Journal of Geology, 114(6): 735-751

Wang T, Tong Y and Jahn BM. 2007. SHRIMP U-Pb Zircon geochronology of the Altai No.3. Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Review, 32(1-2): 325-336

Wang ZG, Yu XY and Zhao ZH. 1989. Geochemistry of Rare Earth Elements. Beijing: Science Press, 1-535 (in Chinese)

Wang ZG, Zhao ZH, Zou TRetal. 1998. Geochemistry of the Granitoids in Altay. Beijing: Science Press, 1-152 (in Chinese)

Watson EB and Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett., 64(2): 295-304

Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman Press, 295-323

Windley BF, Kroener A, Guo JH, Qu GS, Li YY and Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai Orogen, NW China: New zircon age data and tectonic evolution. Journal of Geology, 110(6): 719-737

Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London, 64(1): 31-47

Xiao QH, Deng JF, Ma DQ and Hong DW. 2002. The Ways of Investigation on Granites. Beijing: Geological Publishing House, 45-50 (in Chinese)

Xiao WJ, Windley BF, Badarch G, Sun S, Li J, Qin KZ and Wang Z. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia. Journal of the Geological Society, London, 161(3): 339-342

Xiao WJ, Huang BC, Han CM, Sun S and Li JL. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research 18(2-3): 253-273

Xie GQ, Mao JW, Li RL and Bierlein FP. 2008. Geochemistry and Nd-Sr isotopic studies of Late Mesozoic granitoids in the southeastern Hubei Province, Middle-Lower Yangtze River belt, eastern China: Petrogenesis and tectonic setting. Lithos, 104(1-4): 216-230

Xu JF, Castillo PR, Chen FR, Niu HC, Yu XY and Zheng ZP. 2003. Geochemistry of Late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, Northwest China: Implications for back-arc mantle evolution. Chem. Geol., 193(1-2): 137-154

Yakubchuk A, Seltman R and Shatovh V. 2003. Tectonics and metallogeny of the western part of the Altaid orogenic collage. Tectonic evolution and metallogeny of the Chinese Altay and Tianshan. In: Mao JW, Goldfarb RJ, Seltman R, Wang DH, Xiao WJ and Hart C (eds.). Proceedings Volume of the International Symposium of the IGCP-473 Project in Urumqi and Guidebook of the Field Excursion in Xinjiang, China: August 9-21, IAGOD Guidebook Series 10: CERCAMS/NHM London, 7-16

Yang FQ, Wu H, Franco P, Ma BY, Xia HD, Deng HJ, Liu XW, Gang X and Zhao Y. 2007. The Jiashan syenite in northern Hebei: A record of lithospheric thinning in the Yanshan intracontinental orogenic belt. Journal of Asian Earth Sciences, 29(5-6): 619-636

Yang FQ, Zhao Y, Zeng QL, Wu H and Xia HD. 2007. I- and A-type composite granites of the Panshan pluton in the Jixian, Tianjin: A record of regional tectonic transformation? Acta Petrologica Sinica, 23(3): 529-546 (in Chinese with English abstract)

Yang FQ, Mao JW, Yan SH, Liu F, Chai FM, Zhou G, Liu GR, He LX, Geng XX and Dai JZ. 2008. Geochronology, geochemistry and geological implications of the Mengku synorogenic plagiogranite pluton in Altay, Xinjiang. Acta Geologica Sinica, 82(4): 485-499 (in Chinese with English abstract)

Yuan C, Sun M, Xiao WJ, Li XH, Chen HL, Lin SF, Xi XP and Long XP. 2007. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. Chemical Geology, 242(1-2): 22-39

Yuan C, Sun M, Long XP, Xia XP, Xiao WJ, Li XH, Lin SF and Cai KD. 2007. Constraining the deposition time and tectonic background of the Habahe Group of the Altai. Acta Petrologica Sinica, 23(7): 1635-1644 (in Chinese with English abstract)

Yuan F, Zhou TF and Yue SC. 2001. The ages and the genetic types of the granites in the Nurt area, Altay. Xinjiang Geology, 19(4): 292-296 (in Chinese with English abstract)

Yuan SD, Zhang DL, Shuan Y, Du AD and Qu WJ. 2012. Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province, China and its geological implications. Acta Petrologica Sinica, 28(1): 27-38 (in Chinese with English abstract)

Yue YJ, Wang SG and He GQ. 1990. The genetic types of granitoids and its implications on crustal evolution in Altay orogenic belt, China. Geoscience of Xinjiang, (2): 72-85 (in Chinese with English abstract)

Zeng QS, Chen GH, Wang H and Shan Q. 2007. Geochemical characteristic, SHRIMP zircon U-Pb dating and tectonic implication for granitoids in Chonghuer basin, Altai, Xinjiang. Acta Petrologica Sinica, 23(8): 1921-1932(in Chinese with English abstract)

Zhang C, Liu F and Yang FQ. 2013. A discussion on genetic mechanism of the Kuerqis iron deposit in Fuyun County, Xinjiang. Rock and Mineral Analysis, 32(1): 157-165 (in Chinese with English abstract)

Zhang ZC, Yan SH, Chen BL, Zhou G, He YK, Chai FM, He LX and Wan YS. 2006. SHRIMP zircon U-Pb dating for subduction-related granitic rocks in the northern part of East Junggar, Xinjiang. Chinese Science Bulletin, 51(8): 952-962 (in Chinese)

Zhao YJ, Yuan C, Zhou MF, Yan DP, Long XP and Li JL. 2007. Geochemistry and petrogenesis of Laojungou and Mengtougou granites in western Sichuan, China: Constrains on the nature of Songpan-Ganzi basement. Acta Petrologica Sinica, 23(5): 995-1006 (in Chinese with English abstract)

Zhao ZH, Wang ZG, Zou TR. 1993. The REE, isotopic composition of O, Pb, Sr and Nd and petrogenesis of granitoids in the Altai region. In: Tu GC (ed.). Progress of Solid-Earth Sciences in Northern Xinjiang, China. Beijing: Science Press, 239-266 (in Chinese)

Zhou G, Zhang ZC, Luo SB, He B, Wang X, Yin LJ, Zhao H, Li AH and He YK. 2007. Confirmation of high temperature strongly peraluminous Mayin’ebo granites in the south margin of Altay, Xinjiang: Age, geochemistry and tectonic implications. Acta Petrologica Sinica, 23(8): 1909-1920 (in Chinese with English abstract)

Zhu YF and Zeng YS. 2002. Rb-Sr isochron age of Keketuohai No.3 pegmatit. Mineral Deposit, 21(Suppl.1): 1110-1111 (in Chinese)

Zhu YF, Zeng YS and Gu LB. 2006. Geochemistry of the rare metal-bearing pegmatite No.3 vein and related granites in the Keketuohai region, Altay Mountains, Northwest China. Journal of Asian Earth Sciences, 27(1): 61-77

Zou TR, Zhang XA, Jia FY, Wang RC, Cao HZ and Wu BQ. 1986. The origin of No.3 pegmatite in Altay Mountain, Xinjiang. Mineral Deposits, 5(4): 34-48 (in Chinese)

Zou TR, Cao HZ and Wu BQ. 1988. Orogenic and anorogenic granitoids of the Altay Mountains, Xinjiang and their discrimination criteria. Acta Geologica Sinica, 62(3): 228-234 (in Chinese)

Zou TR and Li QC. 2006. The Rare Metal and the REE Deposits in Xinjiang, China. Beijing: Geological Publishing House, 34-51 (in Chinese)

附中文参考文献

柴凤梅, 董连慧, 杨富全, 刘锋, 耿新霞, 黄承科. 2010. 阿尔泰南缘克朗盆地铁木尔特花岗岩体年龄、地球化学特征及成因. 岩石学报, 26(2): 377-386

陈富文, 李华芹, 王登红. 1999. 中国阿尔泰造山带燕山期成岩成矿同位素年代学新证据. 科学通报, 44(11): 1142-1147

陈汉林, 杨树峰, 厉子龙, 袁超, 肖文交, 李继亮, 余星, 林秀斌. 2006. 阿尔泰造山带南缘基性杂岩的形成背景及其动力学含义. 岩石学报, 22(1): 127-134

陈毓川, 叶庆同, 冯京. 1996. 阿舍勒铜锌成矿带成矿条件和成矿预测. 北京: 地质出版社, 33-145

丛峰, 唐红峰, 苏玉平. 2007. 阿尔泰南缘泥盆纪流纹岩的地球化学和大地构造背景. 大地构造与成矿学, 31(3): 359-364

何国琦, 韩宝福, 岳永君. 1990. 中国阿尔泰造山带的构造分区和地壳演化. 见: 新疆地质科学(第2辑). 北京: 地质出版社, 9-20

何国琦, 李茂松, 刘德权等. 1994. 中国新疆古生代地壳演化及成矿. 乌鲁木齐: 新疆人民出版社, 香港: 香港文化教育出版社, 1-437

何国琦, 成守德, 徐新, 李锦轶, 郝杰. 2004. 中国新疆及邻区大地构造图(1:2500000)说明书. 北京: 地质出版社, 1-65

侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492

李鹏春, 许德如, 陈广浩, 夏斌, 贺转利, 符巩固. 2005. 湘东北金井地区花岗岩成因及地球动力学暗示: 岩石学、地球化学和Sr-Nd同位素制约. 岩石学报, 21(3): 921-934

刘锋, 李延河, 毛景文, 杨富全, 柴凤梅, 耿新霞, 杨宗喜. 2008. 阿尔泰造山带阿巴宫花岗岩体锆石SHRIMP年龄及其地质意义. 地球学报, 29(6): 795-804

刘锋, 杨富全, 毛景文, 柴凤梅, 耿新霞. 2009. 阿尔泰造山带阿巴宫花岗岩体年代学及地球化学研究. 岩石学报, 25(6): 1416-1425

刘锋, 杨富全, 李延河, 郭正林, 柴凤梅, 耿新霞, 张志欣. 2010. 新疆阿尔泰南缘萨尔布拉克铁矿区花岗岩年代学及地球化学研究. 地质学报, 84(2): 195-205

刘锋, 张超, 杨富全. 2012a. 新疆阿尔泰南缘加尔巴斯套铁矿床成矿时代及成矿作用研究. 矿床地质, 31(6): 1277-1288

刘锋, 张志欣, 李强, 屈文俊, 李超. 2012b. 新疆可可托海3号伟晶岩脉成岩时代的限定: 来自辉钼矿Re-Os定年的证据. 矿床地质, 31(5): 1111-1118

刘伟. 1990. 中国新疆阿尔泰花岗岩的时代及成因类型特征. 大地构造与成矿学, 14(1): 44-56

刘伟. 1993. 新疆阿尔泰山岩体全岩Rb-Sr等时线年龄和地壳运动与构造环境的演化.见:新疆地质科学第四卷. 北京: 地质出版社, 35-50

路凤香, 桑隆康. 2002. 岩石学. 北京: 地质出版社, 1-399

马昌前, 明厚利, 杨坤光. 2004. 大别山北麓的奥陶纪岩浆弧: 侵入岩年代学和地球化学证据. 岩石学报, 20(3): 393-402

芮行健, 吴玉金. 1984. 中国阿尔泰花岗岩的成因. 见: 徐克勤编. 花岗岩地质和及其与成矿的关系国际学术会议论文集. 南京: 江苏科学技术出版社, 281-291

单强, 牛贺才, 于学元, 曾乔松. 2007. 新疆北部阿尔泰南缘晚古生代高钾高硅熔结凝灰岩的地球化学、岩浆成因及构造背景. 岩石学报, 23(7): 1721-1729

童英, 王涛, 洪大卫, 柳晓明, 韩宝福. 2005. 阿尔泰造山带西段同造山铁列克花岗岩体锆石U-Pb年龄及其构造意义. 地球学报, 26(增刊): 74-77

童英, 王涛, Kovach VP, 洪大卫, 韩宝福. 2006. 阿尔泰中蒙边界塔克什肯口岸后造山富碱侵入岩体的形成时代、成因及其地壳生长意义. 岩石学报, 22(5): 1267-1278

童英, 王涛, 洪大卫, 代雅建, 韩宝福, 柳晓明. 2007. 中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义. 岩石学报, 23(8): 1933-1944

王登红, 陈毓川, 徐志刚, 李天德, 傅旭杰. 2002. 阿尔泰成矿省的成矿系列及成矿规律. 北京: 原子能出版社, 1-493

王广耀, 许培春. 1983. 新疆阿尔泰地区岩浆岩的特征及其与成矿关系. 西北地质, (1): 8-21

王京彬, 秦克章, 吴志亮, 胡剑辉, 邓吉牛. 1998. 阿尔泰山南缘火山喷流沉积型铅锌矿床. 北京: 地质出版社, 1-210

王涛, 洪大卫, 童英, 韩宝福, 石玉若. 2005. 中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石SHRIMP年龄、成因及陆壳垂向生长意义. 岩石学报, 21(3): 640-650

王中刚, 于学元, 赵振华. 1989. 稀土元素地球化学. 北京: 科学出版社, 1-535

王中刚, 赵振华, 邹天人等. 1998. 阿尔泰花岗岩类地球化学. 北京: 科学出版社, 1-152

肖庆辉, 邓晋福, 马大铨, 洪大卫. 2002. 花岗岩研究思维与方法. 北京: 地质出版社, 45-50

杨富全, 赵越, 曾庆利, 吴海, 夏浩东. 2007. 天津蓟县盘山I-A型复合花岗岩体——区域构造环境转变的记录? 岩石学报, 23(3): 529-546

杨富全, 毛景文, 闫升好, 刘锋, 柴凤梅, 周刚, 刘国仁, 何立新, 耿新霞, 代军治. 2008. 新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球化学及其地质意义. 地质学报, 82(4): 485-499

袁超, 孙敏, 龙晓平, 夏小平, 肖文交, 李献华, 林寿发, 蔡克大. 2007. 阿尔泰哈巴河群的沉积时代及其构造背景. 岩石学报, 23(7): 1635-1644

袁峰, 周涛发, 岳书仓. 2001. 阿尔泰诺尔特地区花岗岩形成时代及成因类型. 新疆地质, 19(4): 292-296

袁顺达, 张东亮, 双燕, 杜安道, 屈文俊. 2012. 湘南新田岭大型钨钼矿床辉钼矿Re-Os同位素测年及其地质意义. 岩石学报, 28(1): 27-38

岳永君, 王式洸, 何国琦. 1990. 中国阿尔泰造山带中花岗岩类的成因类型及其在地壳演化中的意义. 新疆地质科学, (2): 72-85

曾乔松, 陈广浩, 王核, 单强. 2007. 阿尔泰冲乎尔盆地花岗质岩体的锆石SHRIMP U-Pb 定年及其构造意义. 岩石学报, 23(8): 1921-1932

张超, 刘锋, 杨富全. 2013. 新疆富蕴县库额尔齐斯铁矿成因机制研究. 岩矿测试, 32(1): 157-165

张招崇, 闫升好, 陈柏林, 周刚, 贺永康, 柴凤梅, 何立新, 万渝生. 2006. 新疆东准噶尔北部俯冲花岗岩的SHRIMP U-Pb锆石定年. 科学通报, 51(8): 952-962

赵永久, 袁超, 周美夫, 颜丹平, 龙小平, 李继亮. 2007. 川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘-甘孜地体基底性质的制约. 岩石学报, 23(5): 995-1006

赵振华, 王中刚, 邹天人. 1993. 阿尔泰花岗岩类REE及O、Pb、Sr、Nd同位素组成及成岩模型. 见: 涂光炽. 新疆北部固体地球科学新进展. 北京: 科学出版社, 239-266

周刚, 张招崇, 罗世宾, 何斌, 王祥, 应立娟, 赵华, 李爱红, 贺永康. 2007. 新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩: 年龄、地球化学特征及其地质意义. 岩石学报, 23(8): 1909-1920

朱永峰, 曾贻善. 2002. 可可托海3号脉伟晶岩铷-锶同位素等时线年龄. 矿床地质, 21(S1): 1110-1111

邹天人, 张相哀, 贾富义, 王汝聪, 曹惠志, 吴柏青. 1986. 论阿尔泰3号伟晶岩脉的成因. 矿床地质, 5(4): 34-48

邹天人, 曹惠志, 吴柏青. 1988. 新疆阿尔泰造山花岗岩和非造山花岗岩及其判别标志. 地质学报, 62(3): 228-234

邹天人, 李庆昌. 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社, 34-51

猜你喜欢

阿尔泰造山黑云母
黑龙江省造山带研究:关于洋壳俯冲造山和陆壳碰撞造山磨拉石的认识*
花岗岩中黑云母矿物学特征及其地质意义
柴达木盆地北缘造山型金矿成矿条件及找矿潜力
黑云母的标型特征简述
黑云母温压计在岩浆系统中的适用性研究
妈妈的吻
妈妈的吻
与侵入岩有关的金矿床与造山型金矿床的区别
非洲东南部造山型金矿成矿环境与资源潜力分析
新疆阿尔泰铁矿成矿规律浅析