APP下载

湍流风速谱有效模态的POD分析法

2014-03-05

土木与环境工程学报 2014年6期
关键词:顺风湍流桥面

刘 哲

(汕头大学 工学院,广东 汕头515063)

塔科马窄桥(Tacoma Narrows Bridge)的事故引起了人们对桥梁气动弹性失稳现象的研究,特别是随着材料和技术的进步,大跨度桥梁的不断出现使得其更容易受到强风作用而产生如颤振、抖振等桥梁气动弹性现象。研究人员对随空间和时间变化的非稳定风荷载引起的抖振现象在理论方面进行了较为广泛的研究,其中在单模态的抖振响应理论方面,Liepmann首先提出了对抖振现象研究;随后Daveport[1]利用统计方法研究了线性结构的颤振响应;在多模态气动弹性耦合模型方面Scanlan[2]提出了多模态考虑气动弹性的耦合抖振分析理论方法;Jain等[3]则提出了考虑了颤振导数对抖振的影响;为了减少数值模拟过程中的计算量,Chen等[4]基于上述方从频域和时域角度的提出了基于状态空间的抖振简化算法,并推导了气动导纳的特征函数及其对抖振的影响;Costa等[5]对湍流风场与桥梁的相互作用进行了时域分析;Caracoglia[6]对抖振分析中的结构参数和气动参数的不确定性进行了讨论;Seo等[7]探讨了由气动弹性荷载引起的误差等因素影响抖振分析的原因;Karmakar等[8]则探讨了非高斯风速场引起的桥梁抖振响应;Hu等[9]研究了由台风引起的大跨度桥梁非稳定抖振响应。刘婷婷等[10-11]采用计算流体力学方法改进了大跨度桥梁抖振力计算方法;马存明等[12]以某大跨悬索桥流线形箱桥梁断面为研究对象,通过风洞试验,用测压法对流线形箱梁断面在不同紊流场中的气动力进行了测量,得出适合流线形箱梁断面的三维气动导纳公式和抖振力沿跨向的相干函数;郭增伟等[13]利用概率统计方法探讨了风致振动内力和位移之间存在的可解耦的线性关系,建立了桥梁风致振动内力和位移之间的多元线性回归模型;李利孝等[14]研究了目前被动湍流风洞试验中无法准确模拟的湍流积分尺度对桥梁结构抖振响应的影响;黄东梅等[15]对高层建筑风荷载采用双模态转换法即联合运用经典模态分析法和本征正交分解法(POD)来进行风振响应研究。

上述研究通常假定阵风在所有频率范围内对桥梁的抖振产生影响,然而随着对阵风特性了解的深入,是否有可能在所有频率范围内激发结构的响应是值得探讨的;同时由于阵风场具有时间、空间变化特点,如何在频率和空间范围内表征此荷载场的特点也是值得关注的。本征正交分解方法能够处理上述阵风湍流场的频率和空间变化特性,并通过对风速谱密度函数的分解来考虑有效湍流对桥梁抖振的贡献。因此本文建立了基于POD方法的阵风场有效湍流强度及特征值的分解方法,通过某斜拉桥的算例分析验证了该方法的有效性,研究发现该方法可以对引起桥梁抖振的阵风场进行敏感性分析,并确定激发桥梁抖振的主要阵风模态及有效湍流。

1 理论模型

桥面板在湍流风场的运动可以用图1所示的二维简化图表示,其中p为顺风向位移,h为竖直或垂直方向位移,α为风速与桥梁断面的攻角,U 为风速,而U通常又可以分解成为图2所示的顺风向(u)和竖直向(w)随时间变化的分量。

根据准定常气动理论[2],桥梁的抖振力通常可以表示为

其中:ρ为空气密度;B为桥面宽度;CL、CD和CM分别是桥面板的升力、阻力和扭转系数,而C′L、C′D和C′M是与攻角α有关的升力、阻力和扭力系数。

图1 桥面位移方向分量

图2 风速分量方向

根据经典结构动力学理论,桥梁系统可以假定为具有经典阻尼且模态互不耦合的动力系统,因此其动力响应方程可以表示成为具有k阶模态响应qk(t)的解耦方程[2]:

其中:ξk和nk分别是k阶广义阻尼比和频率(k=1,2,…,m,m 为 结构模态总数);为模态响应矩阵,Q(t)为外力矩阵,这里仅代表由湍流风引起的抖振力(Fb),联立式(1)~(4)可得

在频域内对上式进行傅里叶变换,式(5)可以表示为

其中:Cu和Cw分别表示顺风向和垂直向的气动系数矩阵;Hk(n)复频响应函数,可以写成

2 模型参数

1)基本参数

采用图3所示的斜拉桥有限元模型为计算实例,该桥全长936m,其中与桥面相关的升力、阻力和扭转系数在攻角为零的情况下分别为CD=0.099,CL=-0.045,CM=0.016,C′D=-0.173,C′L=0.335,C′M=0.159,结构自振周期如表1所示,结构前10阶模态的主要振动模态如图4所示,从图4可以看出随着频率的增加结构的振型更加复杂。

图3 某斜拉桥有限元模型

表1 桥梁前30阶频率

2)风速密度谱函数

为了反映桥面的湍流风场,本算例中用117个独立的随机过程模拟沿桥面中心线变化的水平和竖直湍流风场,而风速分量的功率谱密度函数(Power Spectrum Density Function,PSDF)可用式(10)表示,其变化情况见图5,式(17)描述各随机过程的相关性。

图4 结构前10阶模态主要振型

图5 风速谱

其中:σε和Lε(M)分别为湍流分量ε(t)=u(t)和w(t)的标准差和积分尺度r=y,z和r=y′,z′分别是位于桥面中轴线两点M 和M′的坐标;Crε为ε(t)沿着r的指数衰减系数,地面的粗超长度取z0=0.015,平均风速符合对数分布,其中的摩擦速度为u*=1.9m/s,其中σu=5.13m/s,σw=2.57m/s,Cyu=Czu=10和Czw=3。

由于相关函数对风速分量的模拟很重要,对于大跨度桥梁来说为了模拟主梁轴线各点的风速需要较多的参考点,因此矩阵Sε(M,M′,n)通常呈现稀疏矩阵的特点,图6表示了不同频率下Svv(M,M′,n)的变化情况,可以很明显的看出非对角线元素数值随着频率的增加下降的很快,因此可以表明在高频状态下这些值可以忽略以提高计算效率。

图6 不同频率下的PSD矩阵Svv(M,M′,n)

3 结果分析

1)基于POD方法的有效湍流研究

POD分解方法对风速谱密度函数的进行分解,图7表示了顺风向和横风向湍流分量的功率谱密度函数矩阵的前4阶特征值和特征向量,可以看出在低频部分第1阶特征值要大于高阶特征值,随着频率的增加特征值趋于一致。

图7 湍流分量的风速谱特征值及特征向量

图7(c)、(d)显示了顺风向和横风向湍流分量的前4阶特征向量的变化情况,可以发现在频率f>0.3Hz范围内模态并没有对相关的频率产生影响,当频率超过0.3Hz后形状趋于一致。

图8表示了位于桥梁跨中的根据式(8)~(9)进行重构的顺风向和横风向湍流分量的PSDF,可以看出在低频范围内,只需要少部分模态就可以表示湍流分量,而在高频部分需要较多的POD模态才能较好的模拟湍流中的简谐部分,同时还可看出竖向湍流分量的构成要比顺风向的分量慢,其原因在于竖向分量含有的简谐成分要多于水平分量。

图8 位于桥面轴线中点处的湍流分量PSDF的模态截断值

2)交叉模态参与系数

图9显示了根据式(13)~(14)得到的结构前20阶自振模态和前10阶湍流分量模态之间的交叉模态参与系数,可以看出由于结构模态与湍流模态的相似性,这种变化也可以在图7、图8中看出,使得所选取的结构模态与湍流模态发生正交关系,因此矩阵Au(图9(a))和Aw(图9(b))的数值变得很小,仅有少量的湍流模态激励了结构的模态,特别是矩阵Aw的数值中很多都消失了,只有第1、2、3、5、8阶垂直风向的湍流分量模态激励了结构的振动,第8阶和第10阶激励了结构的第13阶模态,但是对于矩阵Au,顺风向湍流模态激励了结构的不同自振模态,因此顺风向的湍流分量对结构抖振作用是明显的,通过分析还可以看出结构的模态(即自振频率和周期)与湍流风场的模态是相关的,并非所有湍流模态对会激励结构模态。

图9 湍流分量的交叉模态参与系数

3)有效湍流

如前所述湍流场可以利用有效的POD模态来进行重构,根据公式(7)本文取M=10。图10(a)、(b)分别表示了沿着桥梁长度方向的顺风向和横风向的湍流分量的PSDF,从图中可以看出有效湍流的简谐部分主要集中频率较低的范围内,其中顺风向分量集中在n<0.3Hz的范围内,而横风向分量集中在n<0.5Hz的范围内,通过图10还可以看出由湍流引起的桥梁抖振响应主要发生在结构自振频率较小的范围内,同时在低频范围内,有效湍流谱并不包含高频简谐量。

图11表示了顺风向湍流风量的有效值和实际值之间的三维相关函数,图12则表示了平面的二维变化情况,发现实际湍流的相关函数随着y-y′距离的增加减少的很快,在距离接近0(y=y′)时,其值接近了接近对角线,而有效湍流的相关函数在y=y′周围的较宽的范围内相关函数为1,而在远离主对角线的范围后为0,对于横风向的湍流强度有同样的变化情况。

图13显示了随主梁轴线位置变化和频率变化的顺风和横风向有效湍流分量的相关函数变化情况,在跨中位置处,可以明显的看出在很广的频域范围内有效湍流高度相关,其相关函数大于0.8。由于有效湍流是由大尺度涡产生和控制,因此其计算尺度即反映相关性的距离可以采用的更大的数值,并不会高估抖振的响应。

图10 有效湍流谱值

图11 顺风向及垂直风向湍流风量的相关函数三维显示(结构第1阶模态)

4 结论

利用POD方法对桥梁湍流风场的风速谱密度函数进行了分解,并结合某斜拉桥验证了该方法的有效性。通过上述讨论发现POD方法可以用来研究湍流风速场的空间分布特性,风速场的POD分解对有效湍流模态对桥梁结构抖振响应具有贡献。研究发现只有少量湍流模态能够激励由非稳定风场引起的桥梁结构的低阶模态,而对于高阶湍流模态由于与结构高阶模态的正交性其影响降低,因此少量的POD模态足够反映桥梁抖振现象。

图12 顺风向及垂直风向湍流风量的相关函数二维显示(结构第1阶模态)

图13 沿桥面轴线方向有效湍流分量的相关函数

[1]Davenport A G.Buffeting of a suspension bridge by storm wind[J].Journal of Structural Division,ASCE,1962,88(3):233-268.

[2]Scanlan R H.The action of flexible bridge under wind,II:buffeting theory [J].Journal of Sound Vibration,1978,60(2):201-211.

[3]Jain A,Jones N P,Scanlan R H.Coupled flutter and buffeting analysis of long-span bridges[J].Journal of Structural Engineering,1996,60(2):716-725.

[4]Chen X Z,Matsumoto M,Kareem A.Aerodynamic coupling effects on flutter and buffeting of bridges[J].Journal of Engineering Mechanics,2000,126(1):17-26.

[5]Costa C,Borri C,Flamand O,et al.Time-domain buffeting simulations for wind-bridge interaction [J].Journal of Wind Engineering and Industrial Aerodynamics.2007,95(9-11):991-1006.

[6]Caracoglia L.Influence of uncertainty in selected aerodynamic and structural parameters on the buffeting response of long-span bridges [J].Journal of Wind Engineering and Industrial Aerodynamics,2008,96(3):327-344.

[7]Seo D W,Caracoglia L.Statistical buffeting response of flexible bridges influenced by errors in aeroelastic loading estimation [J].Journal of Wind Engineering and Industrial Aerodynamics,2012(104-106):129-140.

[8]Karmakar D,Ray-Chaudhuri S,Shinozuka M.Conditional simulation of non-Gaussian wind velocity profiles:Application to buffeting response of Vincent Thomas suspension bridge[J].Probabilistic Engineering Mechanics,2012(29):167-175.

[9]Hu L,Xu Y L,Huang W F.Typhoon-induced nonstationary buffeting response of long-span bridges in complex terrain [J].Engineering Structures,2013(57):406-415.

[10]刘婷婷,张文首.基于风洞试验和CFD技术的桥梁抖振荷载研究 [J].武汉理工大学学报,2011,33(1):95-99.Liu T T,Zhang W S.Research on buffeting loading on bridge decks based on wind tunnel test and CFD technology[J].Journal of Wuhan University of Technology,2011,33(1):95-99.

[11]刘婷婷,张文首.CFD方法的大跨度桥梁抖振荷载[J].土木建筑与环境工程,2011,33(6):59-63.Liu T T,Zhang W S.Load analysis of buffeting bridge by CFD [J].Journal of Civil Architecture & Environmental Engineering,2011,33(6):59-63.

[12]马存明,廖海黎,李明水,等.基于三维气动导纳的大跨桥梁抖振分析[J].公路交通科技,2011,28(2):52-56.Ma C M,Liao H L,Li M S,et al.Analysis buffeting of long-span bridge based on 3Daerodynamic admittance function [J].Journal of Highway and Transportation Research and Development,2011,28(2):52-56.

[13]郭增伟,赵林,葛耀君,等.复杂来流桥梁抖振内力多维线性回归算法 [J].哈尔滨工业大学学报,2012,44(8):83-90.Guo Z W,Zhao L,Ge Y J,et al.Multiple linear regression algorithm for buffeting internal force of bridges under the condition of complex incoming wind[J].Journal of Harbin Institute of Technology,2012,44(2):83-90.

[14]李利孝,肖仪清,胡钢,等.积分尺度和风速谱对桥梁抖振响应影响分析 [J].哈尔滨工业大学学报,2012,44(12):18-24.Li L X,Xiao Y Q,Hu G,et al.Influences of integral scale and wind spectrum on buffeting response of longspan bridge [J].Journal of Harbin Institute of Technology,2012,44(12):18-24.

[15]黄东梅,朱乐东,丁泉顺,等.超高层建筑基于双模态转换的风载主模态识别 [J].工程力学,2009,26(9):117-125.Huang D M,Zhu L D,Ding Q S,et al.Identification of the main contribution modes of wind load of supertall buildings based on double modal transformation[J].Journal of Engineering Mechanics,2009,26(9):117-125.

猜你喜欢

顺风湍流桥面
“大同黄花”搭上公益直播“顺风车”
“湍流结构研究”专栏简介
桥面铺装混凝土凿除工艺对比分析
钢桥面铺装技术现状与发展
爱情顺风车
重气瞬时泄漏扩散的湍流模型验证
桥面防水层的技术突破
桥面防水的过去、现在和未来
梦不是反的
湍流十章