APP下载

由一个教学片断想到的

2013-12-29吴桂娟

小学教学参考(数学) 2013年1期

在一次学校的教学研讨课上,某教师执教“乘法的初步认识”一课。上课伊始,教师问道:“谁能一口气报出30个5相加这道算式?”“5+5+5+5+5……”一位学生顺利地开始报算式。教师临时打断他的发言:“你觉得这样麻烦吗?”显然,教师意欲通过引导,使学生感受到这样的算式很麻烦,从而顺利引出“乘法”,让学生体会到乘法的简洁性。没想到,学生竟然回答:“不麻烦!”教师无奈,只得进一步引导:“如果把30个5写在一起,你们感觉怎么样?”学生回答:“很长。”“很好玩。”……显然,所有的生成都没有达到教师的预期目的。于是,教师只能无奈地引入新课:“难道你们不觉得很麻烦吗?下面,我给大家介绍一种新的计算方法——乘法。”……

上述教学案例,课堂中的动态生成很显然不在教师的课前预设中,教师似乎在无奈之中生拉硬扯地将学生拉回了自己预设的教学轨道上。试问:这样的课堂学生怎么会感兴趣?学生还会主动探求知识吗?说不定,学生还在回味无穷地想着怎么报出30个5相加的加法算式呢!

其实,教师如果采用正确的教学策略,就不会有这样的尴尬了。比如,教师可以稍作等待,让学生先说下去,等他自己也觉得弄不清楚说了几个5相加后再追问:“怎么不往下说了?”“你刚才说了几个5相加?”“别人能知道你报的结果吗?”……这样,学生在交流的过程中自然会产生一种认知冲突和心理需要:要是能有一种更加方便的计算方法,那该多好啊!此时,教师再恰如其分地引出“乘法”,新知教学自然会水到渠成。

以往,教案是教师实施教学的“法宝”,因而教师为设计教案绞尽脑汁,力求尽善尽美。然而,随着课程改革的深入推进,教案在课堂教学中似乎已经不那么管用了,即使是一些被认为是经典的教案,在实施过程中也会常常“卡壳”。究其原因,主要是教师过分拘泥于静态教案的预设,而忽视动态学案的生成。预设与生成是对立统一的矛盾体。就对立而言,课前细致的预设使本该动态生成的教学变成了机械执行教案的过程;就统一而言,预设与生成又是相互依存的,没有预设的生成往往是盲目的,而没有生成的预设又往往是低效的。因此,在新课程背景下,处理好预设与生成的关系是提高课堂教学效率的关键所在。教师要根据课堂特定的生态环境,以学生新的思路为基点,灵活调整教学预设,机智地生成新的教学方案,并巧妙引导,使教学富有灵性,彰显智慧。本文就小学数学课堂教学中,处理好预设与生成关系的几种策略作以下探讨。

一、“预设者”策略,创建课堂生成空间

以往教师进行教学设计时,都是采用单线型前进方式,导致课堂上出现“教师跟着教案走,学生跟着教师走”的现象,课堂上一旦出现了离开预设的动态生成,教师就会手足无措。所以,教师在教学设计时要吃透教材和了解学生,预想更多的可能,充分考虑课堂上会出现哪些情况,每种情况如何处理,并做出相应的教学安排,尽量有多种供教师临时选择的设计。这样,有利于教师在课堂上发现学生提出有价值的问题,适时捕捉学生瞬间产生的思维火花,及时运用自己的教育教学智慧,轻松地解决课堂教学中出现的各种意外。

例如,设计“搭配”一课教学时,教师就预想了本节课可能有以下的生成:(1)如果学生搭配是无序的、有遗漏的,怎么引导?(2)如果学生只出现以上装搭配下装的方法时,要不要告知学生以下装搭配上装的方法?(3)如果学生在用符号来表示搭配方法,且大多用画实物的方式呈现时,要不要做出更多的提示?(4)如果学生在第一次搭配中就出现用“2×3=6”来表示搭配的方法时,怎么调控?(5)如果学生提炼不出用乘法表示时,该如何处理……在这节课教学中,由于教师课前注重预设学生的多种学习行为,预想学生出现的多种可能,所以就有更多引导策略上的准备,就为课堂教学活动的展开设计了多种“通道”,为教学预案的动态生成提供了广阔的空间,便于在课堂中及时选择预想的方法,及时找到距离学生最近的“切入点”。

二、“守望者”策略,机智面对课堂生成

教师在进行教学预设时,其思维方式是分析性的,而学生的思维却是随机的、丰富的,因此再完美的预设也不可能预计到所有学生思维的变化。生成性的数学课堂,就好像是悬崖边上的“麦田”,有一群学生在“麦田”里自由自在地游戏、狂奔、乱跑,不断出现新的生成,教师就是站在那“麦田”悬崖边上的守望者。教师守望着这片麦田,哪个学生往悬崖边奔来,就把他捉住,不让一个学生掉下“悬崖”,不让学生迷失于课堂生成。

例如,教学“认识乘法”一课,我在课堂小结时就采用了这一策略。我提问:“通过这节课的学习,你学会了哪些知识?”一学生很快站起来回答:“在这节课上,我学会了加法。”面对这一动态生成的错误资源,我本来想否定的,当时我只要指指板书或让他听听别人的小结就能解决这个问题。但是我并没有进行否定,而是继续问道:“很好,那你学会了哪些加法?”他回答:“我学会了加数相同的加法。”我进一步引导:“这样的加法,我们还可以用什么方法来表示呢?”……对于教师而言,这位学生的回答是一种不需要的生成资源,教师采取这样的教学策略既保护了学生的自尊,又帮助学生理清了思路,同时也在不知不觉中强化了本节课的教学重点。这不比采取简单的读板书或让其听其他学生小结的策略来得精彩得多吗?

三、“引领者”策略,点拨课堂思维生成

教师在课前预设时,虽然要预想学生课堂中会出现的多种可能,但学生是一个个不同的个体,有着不同的经历和想法,预设再充分,也不可能考虑到教学生成的全部内容。因此,学生在课堂中的意外生成,虽然教师课前未预设到,但只要是有利于学生知识的掌握,教师就要及时地捕捉,机智地生成。

例如,教学“元、角、分和小数”这一单元后,我安排了一节复习课,梳理本单元的知识点。当复习到小数的读法时,一位学生问:“为什么小数点后面要分开读?比如13.51,为什么不读成十三点五十一?”面对这突如其来的问题,我没有思考,而是直接回答:“本来就规定这么读的。”“为什么不规定读作十三点五十一?”学生似乎非要找个合理的解释不可。“你们说呢?”我决定把问题抛给学生。学生个个都皱着眉头思考,或许他们也奇怪这一点吧。过了一会儿,有学生举手了。“前面是整数部分,后面是小数部分,为了区别,所以小数部分分开读。”一位学生解释道。“我知道了!”一个学生好像突然发现了什么:“是因为小数部分的末尾加上0,大小都一样,如果按照整数读法就读不清楚了。比如,13.51如果读作十三点五十一,那么13.510就读作十三点五百一十,五十一怎么跟五百一十一样了?所以,我觉得还是应该一位一位分开读。” 还有一位学生说:“我发现从意义上来说,这种读法也是不妥的。如15.15,整数部分的15是表示一个十和五个一,小数部分并不表示一个十和五个一,而是表示十分之一和百分之五。”……经过学生的互动讨论,我也有了正确的解释,并及时进行了小结,这时学生一个个恍然大悟。

在上述教学中,面对课堂中动态生成的问题,我用一句话“你们说呢”引领学生去考虑,去寻找合理的解释。学生给了我们意外的生成,更给了我们生成的惊喜。这里,正因为教师机智的面对动态生成,采取了恰当的教学策略,才凸现了学生的个性,点燃了学生创新思维的火花,使课堂因此而充满活力。

四、“助产士”策略,促进课堂智慧生成

当学生在课堂中的生成可能会和教师课前的预设发生偏差时,教师应根据学生的具体情况,有时甚至可以果断地放弃自己课前的预设,满足学生的学习欲望,进行创造性的生成。像苏格拉底那样,教师应做学生思想的“助产士”,为学生课堂的智慧生成“接生”。

例如,我在教学“摆一摆”时,先出示一张数码宝贝的卡片,请学生估计这张卡片的面积大约是多少。接着,我引导学生用面积是1平方厘米的小正方形测量出卡片的实际面积(结果是54平方厘米),师生评议后将数码宝贝的卡片送给估计得最正确的学生。然后,我拿出一块花手帕,请学生估计手帕的面积,再检测验证。正当许多学生拿出小正方形来铺的时候,一位学生说:“这样测量太麻烦了。”这时许多学生都停了下来,思考着。沉寂了一会儿,又有一位学生说:“是的,太麻烦了,刚才我摆了好久才摆完。如果每一次要摆才能知道某物的面积,那也太麻烦了,有没有更好的办法?”我正要引导学生进入“摆一摆、填一填、找规律”的教学环节时,又有一位学生说:“我刚才摆的时候发现,每排摆6个小正方形,摆了这样的9排,总共是54个小正方形。”紧接着,一学生又说:“1个小正方形是1平方厘米,54个小正方形就有54平方厘米了。”我马上请这位学生演示,然后引导学生比较卡片和小正方形的大小。

生1:一排摆了6个小正方形,摆了9排,6×9=54,卡片的面积就是54个小正方形的面积。

生2:6条小正方形的边刚好是卡片的长度,是6厘米。(学生仔细观察,都说“是的”)

生3:一列有9个小正方形,那样卡片的宽就是9厘米。

生4:6×9,刚好是卡片的长×宽。

生5:卡片的面积=长×宽。

师:是不是凑巧呢?

接着让学生动手画几个长方形来验证自己的发现,然后探索出长方形的面积公式。这样,学生先估后摆,在操作活动的过程中产生认知冲突,并大胆质疑,思考寻找更简便的方法。同时,通过操作活动,学生发现方法,顺利地解决了问题,这样的课堂生成无疑是精彩的。正确地采取引导并取得好的课堂教学效果,需要教师具有敏锐的洞察力,及时做出灵敏的反应,恰当地调整教学策略。

总之,课堂教学是个多元共生、充满互动变化的空间,其极大的变数和不确定性决定了生成的丰富与鲜活比其他活动更甚。这就要求教师在教学过程中不能过分地强调预设,更不能拘泥于教学设计,要更高层次地把握并使用好教材,预测学生可能生成的各种新信息,时刻关注并捕捉课堂上师生互动中产生的有探究价值的新问题,及时准确采用不同的教学策略,把师生的互动引向纵深,让学生产生新的思维碰撞,从而有所发现、有所拓展、有所创新。

(责编 杜 华)