APP下载

Plaxis在板桩码头分析中的应用

2013-09-26汤子扬牛志国陈春燕

水利水运工程学报 2013年1期
关键词:板桩码头弯矩

汤子扬,牛志国,陈春燕

(1.中交第四航务工程勘察设计院有限公司,广东 广州 510230;2.南京水利科学研究院,江苏 南京210029;3.珠江水文水资源研究所,广东 广州 510370)

板桩墙是港口、游艇码头、船坞和其他水运工程中最常见的结构.而钢板桩是板桩墙码头建设中最常用的结构之一,广泛应用于集装箱码头、干散货码头以及海堤及陆域回填工程.板桩结构受力复杂,许多学者在分析和预测板桩墙承载力方面做了研究.B.Rymsza等[1-2]把板桩看作柔性结构来分析其变形和受力特性.C.Don等[3]运用有限单元法分析研究板桩结构的受力特性和破坏机理.J.L.Briaud等[4]用现场试验的方法分析板桩结构.A.D.Barley[5]根据现场观测结果得出了板桩破坏的机理.近年来,随着岩土本构模型的逐渐完善,有限单元法在岩土工程中得到了广泛应用,这为进一步研究板桩的受力特性提供了有力工具.

目前国内外常用的板桩内力计算主要有3种方法[6-9]:自由支承法、基于古典理论的弹性线法和竖向弹性地基梁法.其中竖向弹性地基梁法不仅适用于不同刚度、不同支承条件和边界条件的板桩墙,也适用于多锚和单锚板桩墙的任何工作状态,因此得到了广泛应用.当前在港口工程板桩码头设计中主要采用弹性地基梁法中的m法.该法虽应用广泛但也存在以下几个方面的问题:

(1)现行规范中的弹性地基梁法采用土体的m值来确定水平地基反力系数K(K=mZ,Z为计算点距计算水底的深度),认为K随深度线性变化.而港口工程中的桩,尤其是钢板桩,由于承受了一定的水平力,一般在计算水底处的水平位移都超过了10 mm,属非线性状态,此时采用m法就会产生比较大的误差.虽然规范明确了当板桩墙在计算水底处的水平变位大于10 mm时的m值的取值建议,但与采用Plaxis软件的计算结果仍有较大偏差.

(2)板桩的稳定性由作用在其表面上的压力决定.作用于板桩上的压力主要包括墙后主动土压力、剩余水压力,以及计算水底以下的墙前被动土压力.因此,土压力的假定是决定板桩墙稳定的关键性因素.按现行板桩规范[10]的规定,计算水底以下的墙后主动土压力考虑由计算水底以上地面荷载加土体重产生的土压力,严格地说,这与Plaxis有限元模拟以及物理模型试验分析的结果不一致[11].

(3)现行板桩规范[10]中的弹性地基梁法不考虑墙后被动土压力,当入土深度较大时,Plaxis有限元分析的结果表明此时墙后会产生被动土压力.

随着板桩码头的应用越来越广泛,且向大型深水化发展,有必要进一步研究板桩码头的计算模型,以适应板桩码头大型化发展的要求.基于此,本文采用岩土工程有限元软件Plaxis对上述几个问题进行分析研究,并对土体参数进行敏感性分析.

1 有限元分析模型

安哥拉某沥青码头采用单锚板桩结构,板桩墙采用Φ1020钢管桩和AZ14-770的组合结构,钢管桩的底标高为-18.0 m;锚定桩墙采用AZ12-770板桩;拉杆为直径Φ90的Q235钢拉杆,间距2.6 m(见图1).土的材料参数见表1,前墙、后墙和拉杆的每延米抗压刚度EA分别为4.36×106,2.40×106和4.86×105kN/m,前墙和后墙的每延米抗弯刚度EI分别为4.36×105和4.29×104kPa/m.为方便比较,计算中忽略剩余水压力和船舶荷载,仅考虑码头面上的2 t均载.

表1 土体参数Tab.1 Soil parameters

在Plaxis计算中,板桩码头可以简化为平面应变问题,前墙和后墙用梁单元模拟,土体用15节点的三角形单元模拟,用点对点锚杆单元模拟拉杆.为了研究桩土的相互作用机理,用界面单元模拟桩与土之间的相互作用.通过试算确定对内力无影响的土体计算范围,并简单归纳如图2所示,相应的有限元网格如图3所示.

图2 土体计算范围的选取 Fig.2 Calculation range for quay structure

图3 有限元模型Fig.3 Finite element model generated by Plaxis

2 计算结果分析

2.1 弹性地基梁法与Plaxis有限元法比较

为了对比弹性地基梁法和Plaxis有限元解法的差别,就以上的码头结构分别用弹性地基梁法和Plaxis进行分析计算.主要计算结果见表2.

表2 计算结果对比Tab.2 Calculated results generated by different methods

由表2可以看出,2种方法计算的前墙计算水底处的水平位移均大于10 mm,说明土体已处于非线性状态;但是2种方法计算得到的水平位移和最大弯矩差别较大,这是由于2种方法的土压力假定不同造成的.

图4 墙后主动土压力分布Fig.4 Active earth pressure distribution behind sheet pile wall

2种方案计算得出的墙前主动土压力如图4所示.可见,2种方法在前墙计算水底处以上的主动土压力值相差不大,但是计算水底处以下的主动土压力相差很大.Plaxis计算的土压力基本上呈R型分布,这与模型试验的结果一致[11].这说明了弹性地基梁法中关于入土段墙后主动土压力考虑由计算水底以上地面荷载加土体自重的假定与Plaxis有限元软件模拟的结果不一致,与物理模型试验分析得到的土压力分布规律也不一致[11].因此,从严格意义上说,规范中关于板桩墙的墙后土压力的假定有待进一步研究.

2.2 Plaxis软件参数敏感性分析

2.2.1 土体本构模型的选取 为了选择合理的土体本构模型,选择M-C(摩尔库伦模型)和HS(土体硬化模型)进行计算比较,结果见表3,前墙弯矩见图5.计算结果表明,MC模型的前墙弯矩小很多.这是由于摩尔-库伦模型只有1个刚度模量,刚度不会随着应力水平的改变而改变,荷载-沉降曲线呈线性关系所致.而HS模型的刚度随着应力水平的增加而增加,这符合实际土体的非线性特性.因此,采用HS模型更能模拟实际土体的变形,特别是在模拟开挖和回填的过程中,由于HS模型考虑了卸载模量,其结果也更真实地反映结构的受力情况.

图5 不同本构模型时的前墙弯矩Fig.5 Moment of forward wall based on different constitutive models

表3 不同本构模型时的计算结果Tab.3 Results obtained from different constitutive models

2.2.2 不同入土深度对前墙弯矩的影响 以入土10,15和20 m分别进行计算,计算结果见表4,前墙弯矩变化见图6.可见,前墙位移随着入土深度的增加而减小,前墙的负弯矩随着入土深度的增大而减小,前墙的正弯矩随着入土深度的增大而增大,拉杆拉力随着入土深度的增大而减小.当入土深度等于20 m时,墙后出现被动土压力,这与规范中的弹性地基梁法的假定不一致.

2.2.3 土体参数对前墙弯矩的影响 HS模型中土体的参数主要有内摩擦角φ,黏聚力C,压缩模量E,以及与刚度应力相关性的幂率参数M.为了分析这些参数对前墙弯矩的敏感性,将土体的上述参数增加一定的百分比分别进行计算,计算得到的前墙弯矩见图7(a)~(d),各个参数对前墙弯矩的敏感性见图7(e).可见,内摩擦角对前墙弯矩的敏感度最高,黏聚力和压缩模量次之,参数M的敏感度最低.

图6 不同入土深度时的前墙弯矩Fig.6 Forward wall moment for different embedded length

表4 不同入土深度时的计算结果Tab.4 Results based on different embedded lengths

图7 不同参数对应的前墙弯矩Fig.7 Moment of forward wall corresponding with different parameters

3 结语

本文通过Plaxis软件研究了土体的不同本构模型、前墙入土深度对板桩结构受力性能的影响,分析了前墙主动土压力分布,并对HS模型的土体参数进行敏感性分析,得出以下结论:

(1)在计算水底以上部分,对于前墙墙后主动土压力分布,Plaxis软件计算结果与现行规范方法计算结果基本一致,但计算水底以下部分,两者结果相差较大,但Plaxis计算的土压力分布与物理模型试验的结果一致,因此现行规范中关于计算水底下以下部分的墙后主动土压力的假定有待进一步研究.

(2)现行板桩规范中弹性地基梁法不考虑墙后被动土压力,通过Plaxis软件分析发现,当入土深度较大时,前墙底部出现向后的位移,即墙后出现被动土压力.

(3)在Plaxis软件中应用不同的土体本构模型分析板桩结构受力后发现,HS模型(土体硬化模型)能更真实地模拟土体的非线性状态,因此在用Plaxis软件进行板桩结构分析中,建议采用HS模型.

(4)前墙位移随着入土深度的增加而减小,前墙的负弯矩随着入土深度的增大而减小,前墙的正弯矩随着入土深度的增大而增大,拉杆拉力随着入土深度的增大而减小.

(5)通过对HS模型的土体参数敏感性分析后发现,内摩擦角的敏感度最高,黏聚力和压缩模量次之,参数M的敏感度最低.

[1]RYMSZA B,SAHAJDA K.Static analysis of restrained sheet-pile walls[C]∥RYMSZA B,SAHAJDA K.Geotechnics in Maritime Engineering.Poland,2008:1-8.

[2]MCNAB A.Earth retention systems handbook[M].New York:McGraw-Hill Publishers,2002.

[3]DON C,WARRINGTON P E.Anchored sheet pile wall analysis using fixed end method without estimation of point of contraflexure[M].Vulcanhammer info,2007:1-27.

[4]BRIAUD J L,NICHOLSONP,LEEJ.Behavior of a full-scale vert wall in sand[J].Geotechnical Geo-environ,2000,126(9):808-818.

[5]BARLEY A D.The failure of a twenty-one year old anchored sheet pile quay wall on the thames[J].Ground Engineering,1997(3):42-45.

[6]王浩芬,李久旺.板桩m法计算的初步验证[J].水运工程,1986(7):34-37.(WANG Hao-fen,LI Jiu-wang.Preliminary verification of m method for sheet pile calculation[J].Port&Waterway Engineering,1986(7):34-37.(in Chinese))

[7]王浩芬,李久旺.有锚柔性墙的内力与变形分析[J].岩土工程学报,1987(6):67-72.(WANG Hao-fen,LI Jiu-wang.Analysis of internal force and deformation for anchored flexible wall[J].Chinese Journal of Geotechnical Engineering,1987(6):67-72.(in Chinese))

[8]郭宗勤.板桩的计算[J].重庆交通学院学报,1983(4):53-63.(GUOZhong-qin.Calculation of sheet piles[J].Journal of Chongqing Jiaotong University,1983(4):53-63.(in Chinese))

[9]裴张兵,王云秋.板桩码头计算方法的分析比较[J].水运工程,1998(11):6-9.(PEI Zhang-bing,WANG Yun-qiu.Analysis and comparison of the calculation method for sheet pile wharves[J].Port&Waterway Engineering,1998(11):6-9.(in Chinese))

[10]JTS 167-3-2009,板桩码头设计与施工规范[S].(JTS 167-3-2009,Code for design and construction for quay wall of sheet wall[S].(in Chinese))

[11]李士林,徐光明.单锚板桩结构码头离心模型试验研究[J].水利水运工程学报,2008(1):67-72.(LI Shi-lin,XU Guang-ming.Centrifuge modeling tests for sheet-pile bulkhead anchored by single layer of tie-rods[J].Hydro-Science and Engineering,2008(1):67-72.(in Chinese))

猜你喜欢

板桩码头弯矩
预应力混凝土板桩-冠梁协同支护作用机理
全自动化码头来了
新型高分子聚合物板桩结构分析
零弯矩设计理论在连续梁桥中的应用研究
预制混凝土板桩在岸坡支护中的应用研究
前往码头
CFRP-PCPs复合筋连续梁开裂截面弯矩计算方法研究
在码头上钓鱼
钢-混叠合连续梁负弯矩区计算分析
板孔式有弯矩平衡梁应用技术及研究