APP下载

电力系统故障分析方法探究

2013-09-15温敏明

中国新技术新产品 2013年4期
关键词:录波微机零序

温敏明

(惠州供电局,广东 惠州 516000)

近年来,随着微机技术的发展,微机故障录波器已经成为发电厂、变电站及大型工矿企业的一种分析电网故障不可缺少的工具。故障录波器是电力系统发生故障时能自动记录的一种装置,正常情况下不启动或只进行系统数据采集,发生故障或振荡时启动进行录波。故障录波器一般可以记录故障前几百毫秒,故障后几千毫秒时间段内的电压、电流、功率变化及继电保护动作情况,从而为分析事故提供科学依据。故障录波器还可以起到以下作用:a.分析事故原因,制订反事故措施;b.为查找故障点提供依据;c.积累运行经验,提高运行水平等。然而,一些安装有录波器的变电站,对故障录波装置的利用效果,并不能令人满意。究其原因大致为:a早期的录波功能不理想,不方便使用,不利于进行事故分析;b管理与运行人员对故障录波器的功能作用了解不够,未能认识到录波器在进行事故分析、查找故障等场合下的作用,对其不够重视;C对变电站运用的保护装置了解不足,对保护装置判别不同的故障类型所采用的判据模型,还不是很清楚。为此,文中通过一条线路的事故分析,介绍如何利用故障录波数据,进行详细地剖析,借以阐述故障录波数据与事故分析处理之间的关系,供变电站管理与运行人员参考。

1 相关继电保护技术

1.1 微机故障录波装置工作原理

目前微机故障录波装置大多是采用工控机为核心,配置智能化前置机系统,完成模拟量的采集及时钟显示,配置开关量输入、输出处理电路,完成与外界的接口。前置机CPU采用单片机 (或DSP模块),对多路模拟量完成采样后,向主机发送中断信号,由主机读取采样数据。正常运行时,录波屏不断对模拟量进行采集,对开关量进行扫描,同时主机通过对采集的数据处理分析,判断是否起动:触发条件满足时,启动录波,然后将录波数据存入磁盘,再进行分析计算,打印输出录波报告。

1.2 线路高频闭锁方向保护原理

高频闭锁方向保护是根据比较输电线路两侧短路功率方向的原理而构成的。短路功率的正方向规定为由母线流向线路,负方向为由线路流向母线。当被保护线路发生内部故障时,两侧的短路功率均为正方向,两侧保护装置中的收发信机都不发闭锁信号,当然也收不到闭锁信号,保护就动作,使两侧断路器跳闸。当线路外部发生故障时,本线路距故障点近的一侧短路功率方向为负,该侧保护起动,收发信机发出闭锁信号,这个闭锁信号被本线路两侧的保护所接收,把两侧的保护都闭锁起来,不能跳闸。由于这种保护装置是以高频通道经常无电流,而当保护区外发生故障时,由短路功率方向为负的一侧发出高频信号,去闭锁本侧和对侧的保护,因此叫做高频闭锁方向保护。

2 案例分析

2.1 故障录波图形及故障过程分析

2008年2月15日,某局220kV线路发生B相单相接地故障。该条线路两个保护屏分别运行了许继电气股份有限公司的WXH一801/802数字式微机线路保护装置,该保护主要具有纵联高频方向保护、三段式相间距离及接地距离保护、六段式零序电流保护、故障录波以及重合闸功能。

2.1.1 微机故障录波分析报告

a.故障分析报告(微机保护)

距离启动时间/ms:5

零序启动时间/ms:5

纵联启动时间/ms:5

纵联保护收讯时间/ms:8

纵联保护停讯时l~/ms:145

零序Ⅱ段出口时间/ms:561,BN 实测Io=8.490 A,定值=6.500 A

其他保护三跳停讯时间/ms:568

测距:实测(Q)X=0.200,R=6.570,距离(km)=4.450(此处为二次阻抗值)

罗马的风光虽然并没有人传说的那么美,但由于我早有心理准备,所以并不感觉过分的失望。生命中比预想要糟糕的事随处可见。在这样古老而繁华的大城市中,人又怎么能只有一种感觉呢?

b.故障波形报告

该保护装置的故障录波模块的电流波形比较形象、准确,而电压波形相对不能正确反映当时的故障情形,仍有待改善。本线路保护装置中各种保护的录波波形见图1~ 4。

c.疑点

从微机保护故障录波报告中可以看到,此次故障属于B相单相接地故障,且发生在线路本段内,与平时相比该次故障具有以下疑点:①高频保护没有及时切除故障;②零序Ⅱ段出口后,线路上的重合闸没有进行任何动作;③Ⅰ段距离接地保护没有动作。

图1 高频保护故障录波

图2 零序Ⅱ段保护故障录波

图3 距离保护故障录波

图4 纵联零序保护故障录波(对侧)

2.2 高频方向动作分析

查阅WXH-801/802数字式微机线路保护装置和SF600集成电路收发信机技术说明书 ,得到如下结论:正常情况下,系统全相运行时,当发生区内故障,两端的该线路保护,启动元件启动,通知收发信机开始起信(即本侧向对侧发信),且如中间不被停信,将一直持续10S,在保护起动后,本侧功率方向元件开始进入故障处理程序判别短路功率方向。当方向为正时,保护装置作用于收发信机停讯,在保护启动的同时判断收信时间,持续收信5ms后就准备接收对侧的高频信号。如果本侧判为正向后,在持续5~8ms没有收到对侧任何高频信号,则保护装置认为故障发生在区内,应经选相后出口跳闸;相反,若在本侧收发信机停讯后5~8ms内,又收到了对侧的高频闭锁信号,保护装置则认为故障发生在区外,应闭锁出口。另外,收发信机的收信回路在装置发信时只收本侧信号不接收对侧信号,仅当本侧停讯时才收对侧信号。如图5所示。

图5 高频闭锁式方向保护流程图

从本侧故障录波图1和保护报告可以得出,在线路本侧的高频保护在故障发生5ms后保护启动,因故障点可能处于功率方向临界点,直至150ms后保护才判为正向,作用于收发信机停讯,且准备接收对侧高频信号,保护装置准备出口跳闸。对侧是在故障发生后,571.6ms开始停讯,因此在停讯之前一直处于发信状态。对于本侧高频保护而言,在本侧停信后的5~8ms内,收到了对侧的高频信号,装置误认为是区外故障,所以闭锁了高频保护出口,最后只能由后备零序保护在561ms时出口。

对于对侧高频保护没有及时动作的原因,分析认为:由于两侧本高频保护的方向元件都设有正、反2个方向元件(为了防止因功率倒向引起误动),正方向元件正序电流定值可以整定,反方向元件不能整定,灵敏度比正方向元件灵敏(电流门槛取正方向的0.75倍,动作角范围为正方向的1.25倍),任一反方向元件动作闭锁所有的正方向元件。由图4可以看出,对侧在其起信后可能由于当时保护装置的功率方向元件处于临界状态;由于原来保护装置的负序元件是在起信时立即投入,当发生了近距离的故障,而出现功率临界状态时,高频零序反方向元件有可能动作而闭锁了所有正方向元件,从而对侧的收发信机也就一直处于发信状态,直到602.4ms时,方向元件判断短路功率方向为正向,因此装置作用于收发信机停讯。又由于此时本侧已经跳闸出口,经TWJ(跳闸位置继电器)停止向对侧发信,所以对侧保护装置经停讯延时5~8ms后,纵联零序保护选择了B相跳闸。220kV旗山变也发生过类似上述高频保护拒动故障。经厂家分析后,升级了保护装置软件,将负序元件投入时间改为起信后50ms,以避免上述功率临界点的情况,升级后至今没有发生类似情形。

2.3 零序Ⅱ段动作分析

由于高频保护失效,WBH-802数字式微机线路保护装置在故障发生后的561 ms时,实测BN(B相接地短路),零序电流I0=8.49A,而后备保护零序Ⅱ段定值为6.500 A,因此满足了零序Ⅱ段出口的条件,线路的B相断路器应该可以跳闸。通常,当系统发生了单相接地故障时,应是跳单相后,单相重合闸一次,若重合到永久性故障时,跳开三相并再进行自动重合,但从上述录波波形可以看出,自动重合闸装置根本没有动作过。为此,查看了这条线路的继电保护相应整定值,发现此条线路的零序Ⅱ段整定为:I0dz=6.5A,三相永跳(永跳与三跳相比,多了闭锁自动重合装置功能),因此一旦本线路的零序Ⅱ段出口后,跳三相且闭锁本侧的线路的自动重合闸,分析结果和微机保护提供的录波波形十分吻合,这一部分保护装置是正常动作。

2.4 距离保护动作分析

在本保护装置中,距离保护作为高频保护的后备保护,在高频没有出口跳闸的情况下,线路的速断保护之一的接地距离I段保护,理应能够迅速出口跳闸,然而在本次故障中,距离保护只是启动,却没有出口。根据保护装置测得的距离参数:实测 X=0.200,R=6.570(单位为 Q),而保护装置的接地距离保护的I段的整定值为:R1=6.55,X 1=1.52(单位为 Q)。通过计算可以得出:{(R12+X12)=(6.552+1.522)}>{(R 2+X 2)=(6.572+0.2002)},即测得阻抗的幅值小于接地距离保护I段的整定值,如果接地距离保护是采用全阻抗继电器模型作为保护出口判据的话,接地距离保护I段应该出口。查阅该保护装置技术说明书可知:接地综合阻抗元件采用具有多边形特性的阻抗继电器模型,相间综合阻抗元件则采用具有全阻抗的阻抗继电器模型,因此在遇到不同类型距离故障时应该采用与之对应的阻抗继电器模型来分析事故。从图6可以看出,R=6.57Ω的折线,没有落在多边形内(即阴影区内,且多边形内为动作区),因此保护没有达到出口跳闸的条件。综上所述,本次故障的接地距离保护没有出口理所当然,保护装置工作正常。

图6 多边形阻抗继电器模型

结语

故障录波装置已为电网的运行管理带来明显的效益。利用线路两侧或相邻设备的故障录波数据来分析事故原因,具有一定的实用价值,因此,在条件允许时,应该考虑将本区域电网的故障录波装置进行联网,这样在具体分析事故时可以结合对侧或相邻元件的采样数据,更加方便、准确地查找出事故原因。另外,为了更好、更可靠、更真实地反映不同的故障类型,往往会利用这些故障类型各自特征量去分析、处理故障数据,因此可能在同一保护中,经常会利用相同原理的不同判据(或继电器模型)来分析不同故障(如:接地距离和相间距离采用不同的继电器模型)。在利用保护装置的技术说明书时,应该理清该装置针对不同故障类型所采用的不同原理模型,分别用对应的原理去判别不同的故障类型。另外,在分析故障的过程中遇到难点时,参考该保护装置总原理图,可以从整体上考虑问题。

[1]锁小军,孙超图.故障录波器浅析[J].陕西水力发电,2000,16(1):32~35.

[2]全国电力工人技术教育供电委员会.变电运行岗位技能培训教材 (220kV)[M].北京:中国电力出版社.2000.

[3]贺家李,宋从矩.电力系统继电保护原理[M].北京:中国电力出版社.2000.

[4]许继电气股份有限公司,许昌继电器研究所线路室.WXH-801/802数字式微机线路保护装置技术说明书[Z].2001.

[5]许继电气股份有限公司,通信事业部.SF600集成电路收发信机技术说明书[Z].

猜你喜欢

录波微机零序
故障录波装置自动测试系统设计与实现
Fuzzy Search for Multiple Chinese Keywords in Cloud Environment
电力系统微机保护装置的抗干扰措施
6kV供电系统零序保护误动作处理
大电流接地系统接地故障时零序电压分析
基于Hadoop技术的批量录波数据高性能处理方法
基于暂态录波数据的负荷建模方法研究
基于IEC61850标准的水电厂录波数据接入实现方案
新型微机可控顶控制系统原理及现状
变电站中性点不接地系统零序PT的应用探讨