人乳头瘤病毒16型E5蛋白功能的研究进展
2013-01-14史菁菁张喜凤谷鸿喜商庆龙
史菁菁,张喜凤,谷鸿喜,商庆龙
哈尔滨医科大学微生物学教研室,哈尔滨 150081
人乳头瘤病毒(human papillomavirus,HPV)有100多型。根据感染部位不同,分为皮肤型(βHPV)和黏膜型(αHPV)。黏膜型又分为低危型(HPV6、11、42等)和高危型(HPV16、18、31等),可分别引起良性疣和恶性病变。其中,HPV16最普遍。HPV除与宫颈癌相关外,还在乳腺癌、支气管癌、头颈鳞癌、喉癌、肛周生殖器癌等组织中检出[1]。有研究表明,HPV感染与99.5%以上的宫颈癌有关。目前,全世界宫颈癌新发病例每年约50万,其中约80%发生在发展中国家。HPV16编码的早期蛋白中,除E6和E7蛋白外,近年来发现E5蛋白也具有癌基因的转化特性,被认为在宫颈癌形成早期具有十分重要的作用[2]。本文就近年来HPV16 E5蛋白的相关研究进展进行综述。
1 HPV16 E5蛋白的生物学活性
HPV16 E5蛋白由83个氨基酸组成,相对分子质量10 000,为疏水性细胞膜结合蛋白,包括氨基端(N端)疏水域和羧基端(C端)亲水域。在细胞内,E5蛋白主要位于内质网、高尔基复合体和细胞膜上。在宫颈癌发生过程中,HPV16基因组整合到宿主基因组时,E5基因出现丢失,E6和E7基因保持完整性。因此,E5基因的缺失被认为是良性病变至恶性病变的关键转折点。E5蛋白激活的细胞毒性T细胞(cytotoxic T lymphocyte,CTL)可有效杀伤早期病变的肿瘤细胞。Kim等认为,应用靶向E5基因表达细胞的治疗型疫苗可预防宫颈癌癌前病变转为宫颈癌[3]。
Boulenouar等发现,HPV16 E5蛋白损害滋养层和宫颈细胞系的活力,与不育有关[4]。Regan等通过酵母双杂交分析发现,Bap31可作为HPV16 E5蛋白的连接伴侣,并证明这种作用与HPV阳性细胞增殖能力的维持有关[5]。
2 HPV16 E5蛋白的致癌作用
2.1 HPV16 E5蛋白可增强E6和E7蛋白的致癌作用
Maufort等应用转基因鼠模型发现,皮肤内HPV16 E5蛋白高表达可诱导上皮细胞过度增殖,导致肿瘤产生[6]。Maufort等用雌激素处理E5转基因小鼠6个月后,小鼠出现严重的宫颈上皮新生物;E5基因与E6或E7基因联合诱导的宫颈新生物比单独E5基因诱导作用强。延长外源性雌激素处理时间,HPV16 E5蛋白单独表达即可诱导宫颈癌发生[7]。细胞水平的研究也证明,HPV16 E5蛋白可增强E6和E7癌蛋白的转化活性[8-10]。Hu等研究证明,HPV16 E5蛋白表达是双核细胞形成的必要和充分条件。尽管E5蛋白诱导的大多数双核细胞不能繁殖,但共表达HPVE6和E7基因可促进这些细胞繁殖。表达E6和E7基因也能增加双核细胞的形成率。此过程可能使细胞基因组不稳定,导致细胞不断增殖而形成肿瘤[11]。Gao等认为,高危型HPV E5蛋白诱导的细胞融合是HPV相关宫颈癌发生早期的关键性起始事件[12]。
2.2 HPV16 E5蛋白可上调表皮生长因子受体信号
表皮生长因子受体(epidermal growth factor receptor,EGFR)在多种癌症中过量表达,因此EGFR拮抗剂被用于癌症治疗[13]。EGFR在HPV16 E5蛋白致瘤过程起重要作用。HPV16 E5蛋白激活细胞膜上的EGFR,导致EGFR介导的生长信号显著增加。EGFR信号增加又导致环氧化酶2(cyclooxygenase 2,COX-2)上调和前列腺素E2(prostaglandin E2,PGE2)增加。COX-2诱导血管内皮生长因子(vascular endothelial growth factor,VEGF)合成,促进血管形成。细胞分泌的PGE2结合PGE2受体4(PGE2 receptor 4, EP4),通过蛋白激酶A(protein kinase A,PKA)和cAMP 应答元件结合蛋白(cAMP response element-binding protein,CREB)诱导EP4表达,同时PKA诱导Bax降解,抑制凋亡,最终促进细胞生长和增殖[2](图1)。Kim等也发现,HPV16 E5蛋白通过激活EGFR、丝裂原活化蛋白激酶的激酶/细胞外信号调节激酶1/2(mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2,MEK/ERK1/2)和磷脂酰肌醇3激酶/丝氨酸-苏氨酸蛋白激酶(phosphatidylinositol 3 kinase/serine-threonine kinase,PI3K/Akt)增加VEGF表达,表明HPV16 E5蛋白在宫颈癌的血管生成过程中起重要作用,同时表明EGFR信号通路有重要作用[14]。
图1HPV16E5蛋白影响主要信号通路的示意图
Fig.1AschematicdiagramshowingmajorpathwaysbeingaffectedbyHPV16E5protein
2.3 HPV16 E5蛋白对其他相关信号通路的影响
Kivi等发现,HPV16 E5蛋白影响细胞黏附、细胞运动和有丝分裂信号通路。这些变化可能共同导致凋亡抑制,促进上皮内HPV16持续性感染的建立[15]。Chen等发现,HPV16 E5蛋白与ErbB4(JM-b/CYT-1)的细胞外跨膜域结合并形成复合体。当HPV16 E5蛋白与ErbB4在细胞内共表达时,E5蛋白抑制ErbB4诱导的c-Jun蛋白表达和磷酸化,增强细胞增殖能力[16]。
Greco等发现,与HPV16E5基因相关的miR-146a、miR-203和miR-324-5p等微小RNA及靶基因等是HPV感染和转化所涉及宿主细胞调节中的重要组成部分[17]。
3 HPV16 E5蛋白对Ⅰ型干扰素作用的影响
高危型HPV相关癌变过程的关键步骤是病毒游离体(episome)消失和病毒基因组整合入宿主基因组。在宫颈癌细胞系W12中,游离体自发丢失与Ⅰ型干扰素(interferon,IFN)诱导产生的抗病毒基因表达增加有关。Pett等以W12细胞作为HPV16相关宫颈新生物模型进行研究,发现W12细胞中HPV游离体出现自发丢失,与Ⅰ型IFN诱导的抗病毒基因表达增加有关[18]。IFN-β处理W12细胞后,极大促进了从游离体丢失到仅有整合体存留的进程,这种结果反而导致IFN促进宫颈癌发生[19]。IFN-β可在多种受病毒感染的细胞中产生,通过旁分泌和激活IFN诱导基因(IFN-stimulated gene,ISG)诱导抗病毒状态。在病毒感染过程中,诱导或激活IFN调节因子(IFN regulatory factor,IRF)家族中的转录因子如IRF1和IRF3,可介导IFN-β基因转录。因此,IRF1和IRF3是HPV16 E6蛋白和E7蛋白介导宿主防御反应抑制的靶标[20,21]。目前发现HPV16 E5蛋白与Ⅰ型IFN的作用相关。
Muto等发现了HPV16 E5蛋白对IFN-β诱导的抗病毒基因表达的影响。在感染的宫颈角质化细胞中,HPV16 E5蛋白通过Ⅰ型IFN应答刺激促进病毒游离体丢失。在IRF1的特异性调节下,HPV16 E5蛋白可刺激IFN-β表达,进而诱导ISG转录激活。通过IFN信号刺激,HPV16 E5蛋白在一定程度上促进了宫颈癌发生,IRF1在此过程中起重要作用。因此,在HPV相关癌前病变中,HPV16 E5蛋白和IRF1可作为潜在的治疗靶标[22]。另外,Pierangeli等研究妇科门诊感染和未感染HPV女性宫颈黏膜中Ⅰ型IFN的激活作用,与HPV阴性样本相比,HPV16感染时ISG15水平降低,推测可能是HPV对Ⅰ型IFN通路直接抑制所导致的[23]。
4 HPV16 E5蛋白下调主要组织相容性复合物分子和CD1d分子的表达
E5蛋白通过与主要组织相容性复合物(major histocompatibility complex,MHC)分子直接结合或与钙黏蛋白间接作用,将MHC-E5蛋白复合物运送到细胞表面,激发免疫应答[24]。Campo等发现,E5蛋白诱导的人白细胞抗原(human leukocyte antigen,HLA)-A2减少导致HPV特异性CD8+T细胞对E5基因表达细胞识别下降。E5蛋白下调细胞表面和高尔基复合体中聚集的MHC/HLAⅠ类分子,有助于形成HPV持续性感染,并逃避宿主的免疫监视[25]。
CD1d是一种MHCⅠ类糖蛋白,为自然杀伤T细胞呈递自身或微生物脂类抗原。CD1d下调在各种细菌、病毒和真菌逃避宿主免疫监视中发挥重要作用[26]。Miura等发现,CD1d免疫应答在HPV阴性宫颈上皮中很强,而在HPV16阳性宫颈上皮内瘤变(cervical intraepithelial neoplasia,CIN)Ⅰ级中缺乏。CD1d在HPV16E5基因稳定转染的细胞中表达下调;在HPV16 E5蛋白存在时,CD1d表达下降可能有助于HPV感染细胞逃避宿主的免疫监视[27]。
5 HPV16 E5蛋白对炎性通路的影响
HPV16感染过程中,E5蛋白发挥作用涉及部分炎性通路,如核因子κB(nuclear factor κB,NF-κB)、COX-2和PGE2等。Kim等发现,HPV16 E5蛋白通过NF-κB和活化蛋白1(activator protein 1,AP-1)上调COX-2,进而调节宫颈癌进程,其中NF-κB发挥重要作用[28,29]。Oh等发现,HPV16 E5蛋白通过刺激泛素-蛋白酶体介导的Bax蛋白降解,抑制H2O2诱导宫颈癌细胞凋亡,该通路包括COX-2、PGE2和PKA[30]。Sudarshan等也发现,HPV16 E5蛋白能抑制内质网压力反应,关键因素是COX-2、X盒结合蛋白1(X-box binding protein 1,XBP-1)和肌醇需求激酶1a(inositol-requiring kinase 1a,IRE1a);HPV16 E5蛋白能降低共表达E6/E7基因的细胞中COX-2 mRNA水平[31]。由于其他生物学过程也涉及这些炎性通路相关因子,其可能成为HPV16 E5蛋白功能研究的一个突破点。
6 HPV16 E5蛋白作为治疗靶基因的研究
将HPV16 E5蛋白作为靶基因可能有助于对早期宫颈癌的控制[3]。Gao等认为,封闭E5蛋白诱导的细胞融合方法也许能预防宫颈癌发生[12]。Chen等发现,E5全长蛋白能诱导转化活性,促进肿瘤生长,而用E5肽段(第25~33位氨基酸组成)和CpG寡核苷酸或佐剂共同注射可使肿瘤缩小[32]。另外,模拟肽研究主要针对E5蛋白中具有重要生物学活性的功能域,针对N端区域的模拟肽可结合大多数E5蛋白结合的细胞靶蛋白,并与E5蛋白竞争结合这些蛋白。Foy等发现,针对人类表皮生长因子受体2(human epidermal growth factor receptor 2,HER2)和VEGF的模拟肽段可有效降低乳腺肿瘤生长[33,34],然而这类肽药物对正常细胞可能具有一定的非特异性作用,相关研究仍在进行中。
7 结语
HPV16 E5癌蛋白在宫颈癌发生过程中发挥了重要作用。HPV16 E5蛋白除上调EGFR表达外,还增强E6和E7蛋白的致癌活性,且影响Ⅰ型IFN和某些炎性通路。因此,HPV16 E5蛋白被认为是治疗宫颈癌及癌前病变的潜在重要靶标,但其致癌机制有待深入研究。
[1] Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia [J]. Microbiol Mol Biol Rev, 2004, 68 (2): 362-372.
[2] Ganguly N. Human papillomavirus-16 E5 protein: oncogenic role and therapeutic value [J]. Cell Oncol (Dordr), 2012, 35 (2): 67-76.
[3] Kim SW, Yang JS. Human papillomavirus type 16 E5 protein as a therapeutic target [J]. Yonsei Med J, 2006, 47 (1): 1-14.
[4] Boulenouar S, Weyn C, Van Noppen M, Moussa Ali M, Favre M, Delvenne PO, Bex F, No⊇l A, Englert Y, Fontaine V. Effects of HPV-16 E5, E6 and E7 proteins on survival, adhesion, migration and invasion of trophoblastic cells [J]. Carcinogenesis, 2010, 31 (3): 473-480.
[5] Regan JA, Laimins LA. Bap31 is a novel target of the human papillomavirus E5 protein [J]. J Virol, 2008, 82 (20): 10042-10051.
[6] Maufort JP, Williams SM, Pitot HC, Lambert PF. Human papillomavirus 16 E5 oncogene contributes to two stages of skin carcinogenesis [J]. Cancer Res, 2007, 67 (13): 6106-6112.
[7] Maufort JP, Shai A, Pitot HC, Lambert PF. A role for HPV16 E5 in cervical carcinogenesis [J]. Cancer Res, 2010, 70 (7): 2924-2931.
[8] Bouvard V, Matlashewski G, Gu ZM, Storey A, Banks L. The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increases viral gene expression [J]. Virology, 1994, 203 (1): 73-80.
[9] Valle GF, Banks L. The human papillomavirus (HPV)-6 and HPV-16 E5 proteins co-operate with HPV-16 E7 in the transformation of primary rodent cells [J]. J Gen Virol, 1995, 76 (Pt 5):1239-1245.
[10] Stöppler MC, Straight SW, Tsao G, Schlegel R, McCance DJ. The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA [J]. Virology, 1996, 223(1):251-254.
[11] Hu L, Plafker K, Vorozhko V, Zuna RE, Hanigan MH, Gorbsky GJ, Plafker SM, Angeletti PC, Ceresa BP. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion [J]. Virology, 2009, 384 (1): 125-134.
[12] Gao P, Zheng J. High-risk HPV E5-induced cell fusion: a critical initiating event in the early stage of HPV-associated cervical cancer [J]. Virol J, 2010, 7: 238.
[13] Dannenberg AJ, Lippman SM, Mann JR, Subbaramaiah K, DuBois RN. Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention [J]. J Clin Oncol, 2005, 23(2):254-266.
[14] Kim SH, Juhnn YS, Kang S, Park SW, Sung MW, Bang YJ, Song YS. Human papillomavirus 16 E5 up-regulates the expression of vascular endothelial growth factor through the activation of epidermal growth factor receptor, MEK/ ERK1, 2 and PI3K/Akt [J]. Cell Mol Life Sci, 2006, 63 (7-8): 930-938.
[15] Kivi N, Greco D, Auvinen P, Auvinen E. Genes involved in cell adhesion, cell motility and mitogenic signaling are altered due to HPV 16 E5 protein expression [J]. Oncogene, 2008, 27 (18): 2532-2541.
[16] Chen SL, Lin ST, Tsai TC, Hsiao WC, Tsao YP. ErbB4 (JM-b/CYT-1)-induced expression and phosphorylation of c-Jun is abrogated by human papillomavirus type 16 E5 protein [J]. Oncogene, 2007, 26 (1): 42-53.
[17] Greco D, Kivi N, Qian K, Leivonen SK, Auvinen P, Auvinen E. Human papillomavirus 16 E5 modulates the expression of host microRNAs[J]. PLoS One, 2011, 6 (7): e21646.
[18] Pett MR, Herdman MT, Palmer RD, Yeo GS, Shivji MK, Stanley MA, Coleman N. Selection of cervical keratinocytes containing integrated HPV16 associates with episome loss and an endogenous antiviral response [J]. Proc Natl Acad Sci USA, 2006, 103 (10): 3822-2827.
[19] Herdman MT, Pett MR, Roberts I, Alazawi WO, Teschendorff AE, Zhang XY, Stanley MA, Coleman N. Interferon-beta treatment of cervical keratinocytes naturally infected with human papillomavirus 16 episomes promotes rapid reduction in episome numbers and emergence of latent integrants [J]. Carcinogenesis, 2006, 27 (11): 2341-2353.
[20] Park JS, Kim EJ, Kwon HJ, Hwang ES, Namkoong SE, Um SJ. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis [J]. J Biol Chem, 2000, 275 (10): 6764-6769.
[21] Ronco LV, Karpova AY, Vidal M, Howley PM. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity [J]. Genes Dev, 1998, 12 (13): 2061-2072.
[22] Muto V, Stellacci E, Lamberti AG, Perrotti E, Carrabba A, Matera G, Sgarbanti M, Battistini A, Liberto MC, Focà A. Human papillomavirus type 16 E5 protein induces expression of beta interferon through interferon regulatory factor 1 in human keratinocytes [J]. J Virol, 2011, 85 (10): 5070-5080.
[23] Pierangeli A, Degener AM, Ferreri ML, Riva E, Rizzo B, Turriziani O, Luciani S, Scagnolari C, Antonelli G. Interferon-induced gene expression in cervical mucosa during human papillomavirus infection [J]. Int J Immunopathol Pharmacol, 2011, 24 (1): 217-223.
[24] Bravo IG, Crusius K, Alonso A. The E5 protein of the human papillomavirus type 16 modulates composition and dynamics of membrane lipids in keratinocytes [J]. Arch Virol, 2005, 150 (2): 231-246.
[25] Campo MS, Graham SV, Cortese MS, Ashrafi GH, Araibi EH, Dornan ES, Miners K, Nunes C, Man S. HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells [J]. Virology, 2010, 407 (1): 137-142.
[26] Brigl M, Brenner MB. CD1: antigen presentation and T cell function [J]. Annu Rev Immunol, 2004, 22: 817-890.
[27] Miura S, Kawana K, Schust DJ, Fujii T, Yokoyama T, Iwasawa Y, Nagamatsu T, Adachi K, Tomio A, Tomio K, Kojima S, Yasugi T, Kozuma S, Taketani Y. CD1d, a sentinel molecule bridging innate and adaptive immunity, is downregulated by the human papillomavirus (HPV) E5 protein: a possible mechanism for immune evasion by HPV [J]. J Virol, 2010, 84 (22): 11614-11623.
[28] Kim MK, Kim HS, Kim SH, Oh JM, Han JY, Lim JM, Juhnn YS, Song YS. Human papillomavirus type 16 E5 oncoprotein as a new target for cervical cancer treatment [J]. Biochem Pharmacol, 2010, 80 (12): 1930-1935.
[29] Kim SH, Oh JM, No JH, Bang YJ, Juhnn YS, Song YS. Involvement of NF-κB and AP-1 in COX-2 upregulation by human papillomavirus 16 E5 oncoprotein [J]. Carcinogenesis, 2009, 30 (5): 753-757.
[30] Oh JM, Kim SH, Cho EA, Song YS, Kim WH, Juhnn YS. Human papillomavirus type 16 E5 protein inhibits hydrogen-peroxide-induced apoptosis by stimulating ubiquitin-proteasome-mediated degradation of Bax in human cervical cancer cells [J]. Carcinogenesis, 2010, 31 (3): 402-410.
[31] Sudarshan SR, Schlegel R, Liu X. The HPV-16 E5 protein represses expression of stress pathway genes XBP-1 and COX-2 in genital keratinocytes [J]. Biochem Biophys Res Commun, 2010, 399 (4): 617-622.
[32] Chen YF, Lin CW, Tsao YP, Chen SL. Cytotoxic-T-lymphocyte human papillomavirus type 16 E5 peptide with CpG-oligodeoxynucleotide can eliminate tumor growth in C57BL/6 mice [J]. J Virol, 2004, 78(3):1333-1343.
[33] Foy KC, Liu Z, Phillips G, Miller M, Kaumaya PT. Combination treatment with HER-2 and VEGF peptide mimics induces potent anti-tumor and anti-angiogenic responses in vitro and in vivo [J]. J Biol Chem, 2011, 286(15):13626-13637.
[34] Foy KC, Miller MJ, Moldovan N, Carson Iii WE, Kaumaya PT. Combined vaccination with HER-2 peptide followed by therapy with VEGF peptide mimics exerts effective anti-tumor and anti-angiogenic effects in vitro and in vivo [J]. Oncoimmunology, 2012, 1(7):1048-1060.