APP下载

FS4132结构磁空间群的不可约共表示

2013-01-10申香花

通化师范学院学报 2013年12期
关键词:布里渊子群对称性

申香花

(通化师范学院 物理学院,吉林 通化 134002)

群论是揭示物理体系的对称性所蕴藏的深层含义的数学工具,群表示在群论知识体系中占有重要地位.在群论中引入磁空间群可以更加准确地对物理结构进行描述,更能揭示量子系统的对称性.磁空间群中含有反幺正元素,所以不适用寻常空间群的表示,而应该用共表示理论.由于磁空间群的复杂性和计算方法的限制,对磁空间群不可约共表示的计算还很不完整,本文应用诱导共表示的方法,计算了第四类磁空间群FS4132的不可约共表示.

1 诱导磁空间群不可约共表示的途径

(1)

其中P(k)为Hk的小旁群,定义为:

P(k)={α:αk=k+Kq,∀{α|t}∈G}

首先把磁空间群对应的空间群H按Hk作如下分解:

(2)

根据波矢群Hk与磁小群Mk的关系,M按子群Mk旁集分解有如下关系.

(3)

(4)

对(3)式情况,当∀g∈H时,由Mk的不可约共表示诱导M的不可约共表示有:

(5)

其它(α≥|β|+1,β≤|β|或α≤|β|,β≥|β|+1)的非对角超矩阵元均为零.

当∀g∈AH时,由Mk的不可约共表示诱导M的不可约共表示有

(6)

2 FS4132磁空间群的结构

3 计算结果

本文对FS4132磁空间群第一布里渊区X、L点的共表示进行了计算,由于篇幅所限,下面只给出了部分元素的不可约表示:

参考文献:

[1]陶瑞宝.物理学中的群论[M].高等教育出版社,2000.

[2]陈金全.群表示论的新途径[M].上海:上海科学技术出版社,1984.

[4]C.J.Bradley and A.P.Cracknell:The Mathematical Theory of Symmetry in Solid——Representation Theory for Point Groups and Space Groups[M].London:Oxford University Press,1972.

猜你喜欢

布里渊子群对称性
一类截断Hankel算子的复对称性
超聚焦子群是16阶初等交换群的块
基于神经网络的光纤温度和应变快速解调方法
基于布里渊散射的光纤温度和应变快速感知
巧用对称性解题
横向不调伴TMD患者髁突位置及对称性
子群的核平凡或正规闭包极大的有限p群
基于布里渊散射的电力通信光缆故障点高精度定位技术研究
πSCAP-子群和有限群的结构
巧用对称性解题