阻尼奇异微分方程周期解的扭转性
2012-12-04丁锦红
丁 锦 红
(河海大学 理学院数学系, 南京 210098)
0 引 言
对时间周期非线性微分方程平衡点的Lyapunov稳定性研究是微分方程与动力系统的一个重要问题. 然而, 研究保守系统的稳定性很困难, 因为Lyapunov直接方法不适用. 文献[1-8]在Birkhoff标准型和Moser扭转定理的基础上, 发展了研究二阶拉格朗日方程稳定性的解析方法, 即三阶近似方法.
文献[8-9]将上述方法推广到带有阻尼的二阶微分方程中, 即计算了二阶非线性微分方程
x″+h(t)x′+f(t,x)=0
(1)
的三阶近似方程
x″+h(t)x′+a(t)x+b(t)x2+c(t)x3+…=0
(2)
的第一扭转系数β, 其中:f: R×R→ R是关于t的2π-周期函数, 且充分光滑;
若ψ(t)是方程(1)的2π-周期解, 则方程(2)中的系数a,b,c∈C(R/2πZ), 且
若β≠0, 则称解ψ(t)是扭转的. 由Moser扭转定理可知, 此扭转周期解在Lyapunov意义下是稳定的.
方程(2)的一阶线性部分是
x″+h(t)x′+a(t)x=0.
(3)
文献[9]给出了关于式(3)的稳定性准则. 但式(3)的稳定性并不能保证方程(1)的稳定性.
本文考虑阻尼奇异微分方程
(4)
1 预备知识
引理1[8-9]方程(2)的扭转系数为
其中:
θ=2πρ,ρ是Hill方程
(6)
的旋转数;r是奇异方程
(7)
的唯一正2π-周期解, 且满足
这里
引理2[10]假设
(8)
则存在0
1) 方程(7)唯一的正2π-周期解满足
(9)
2) 方程(6)的旋转度ρ满足
(10)
2 主要结果
由文献[11]可知, 当满足条件(8)时, 对于任意的α>0, 方程(4)有一个正的2π-周期解.
定理1存在常数L(α)>0, 使得如果a,h满足条件:
(11)
则存在一个正常数α*, 对于所有的α>0且α≠α*, 方程(4)的正周期解都是稳定的.
证明: 设ψ(t)是奇异方程(4)的正2π-周期解, 则其三阶近似可写为
(12)
其中:
(13)
将式(12)两边同乘σ(h)(t), 可得
(14)
将方程(4)两边同乘σ(h)(t), 有
(15)
再将方程(15)两边同时积分可得
(16)
(17)
由文献[10]可知, 0<γ(1-S(A1))≤ψ(t)≤γ(1+S(A1)), 且当A1→ 0+时,ψmax/ψmin=1+O(A1). 故当式(11)成立时, 若A1→ 0+, 则有
又由式(9)与(10)可知
故有
根据式(5),(13)和(17), 奇异方程(4)的扭转系数β为
(23)
第二项为
(24)
又由式(23)和(24), 当A1→ 0+时,
[1] LEI Jin-zhi, LI Xiong, YAN Ping, et al. Twist Character of the Least Amplitude Periodic Solution of the Forced Pendulum [J]. SIAM J Math Anal, 2003, 35(4): 844-867.
[2] Ortega R. Periodic Solution of a Newtonian Equation: Stability by the Third Approximation [J]. J Differential Equations, 1996, 128(2): 491-518.
[3] Ortega R. The Stability of the Equilibrium: A Search for the Right Approximation [M]. Ten Mathematical Essays on Approximation in Analysis and Topology. Amsterdam: Elsevier, 2005: 215-234.
[4] Torres P J. Twist Solutions of a Hill’s Equations with Singular Term [J]. Adv Nonlinear Stud, 2002, 2(3): 279-287.
[5] Torres P J. Existence and Stability of Periodic Solutions for Second Order Semilinear Differential Equations with a Singular Nonlinearity [J]. Proc Royal Soc Edinburgh: Ser A, 2007, 137(1): 195-201.
[6] ZHANG Mei-rong. The Best Bound on the Rotations in the Stability of Periodic Solutions of a Newtonian Equation [J]. J London Math Soc, 2003, 67(1): 137-148.
[7] CHU Ji-feng, LEI Jin-zhi, ZHANG Mei-rong. The Stability of the Equilibrium of a Nonlinear Planar System and Application to the Relativistic Oscillator [J]. J Differential Equations, 2009, 247(2): 530-542.
[8] CHU Ji-feng, LEI Jin-zhi, ZHANG Mei-rong. Lyapunov Stability for Conservative Systems with Lower Degree of Freedom [J]. Discrete Contin Dyn Syst: Ser B, 2011, 16(2): 423-443.
[9] CHU Ji-feng, XIA Ting. The Lyapunov Stability for the Linear and Nonlinear Damped Oscillator with Time-Periodic Parameters [J/OL]. Abstract and Applied Analysis, 2010, doi: 10.1155/2010/286040.
[10] CHU Ji-feng, ZHANG Mei-rong. Rotation Numbers and Lyapunov Stability of Elliptic Periodic Solutions [J]. Discrete Contin Dyn Syst, 2008, 21(4): 1071-1094.
[11] CHU Ji-feng, FAN Ning, Torres P J. Periodic Solutions for Second Order Singular Damped Differential Equations [J]. J Math Anal Appl, 2012, 388(2): 665-675.