APP下载

航天产品常用泄漏检测方法

2012-12-04陈光奇王荣宗

真空与低温 2012年4期
关键词:质谱真空容器

王 凡,陈光奇,王荣宗

(兰州空间技术物理研究所,真空低温技术与物理重点实验室,甘肃兰州730000)

1 引言

航天产品研制过程涉及到大量有密封性能要求的组件或部件、甚至整机产品,如载人航天器的密封舱、卫星推进剂燃料贮箱、星载一次电源用氢-镍蓄电池、卫星通信用天线、记时用频标光源以及其它各种星载仪器等。航天产品密封性能直接关系到航天器的发射成功率和在轨使用寿命。泄漏检测贯穿航天产品设计、制造、关键工艺点控制、部件性能、整星出场、发射及运行全过程,是确保航天产品密封性能的重要手段。

航天领域使用的泄漏检测方法多种多样,从检测精度上可以分为粗检和细检两种,粗检主要用于较大漏孔的检测工作,适用于产品研制过程中的密封性能定性分析。细检主要用于微小漏孔的测量和定位,适用于产品密封性能的定量检测,主要介绍细检漏方法。细检从测量原理上可以分为氦质谱检漏法、压力变化检漏法和原工质检漏法。在检测方法选择上需要从被检测对象的密封性能指标要求、体积大小和结构复杂性、检测工作安全性、检测成本等方面综合考虑。目前,氦质谱检漏方法在航天产品的泄漏检测工作中应优先选择。

2 氦质谱检漏方法分析

2.1 原理及分类

氦质谱检漏法是利用氦质谱检漏仪的氦分压力测量原理,实现被检件的氦泄漏量测量。当被检件密封面上存在漏孔时,示漏气体氦气及其它成分的气体均会从漏孔泄出,泄漏出来的气体进入氦质谱检漏仪后,由于氦质谱检漏仪的选择性识别能力,仅给出气体中的氦气分压力信号值。在获得氦气信号值的基础上,通过标准漏孔比对的方法就可以获得漏孔对氦泄漏量[1]。

根据检漏过程中的示漏气体存贮位置与被检件的关系不同,可以将氦质谱检漏法分为真空法、正压法、真空压力法和背压法。

2.2 真空法

采用真空法检漏时,需要利用辅助泵或检漏仪对被检产品内部密封室抽真空,采用氦罩或喷吹的方法在被检产品外表面施氦气,当被检产品表面有漏孔时,氦气就会通过漏孔进入被检产品内部,再进入氦质谱检漏仪,从而实现被检产品泄漏量测量。按照施漏气体方法的不同,又可以将真空法分为真空喷吹法和真空氦罩法[2]。其中真空喷吹法采用喷枪的方式向被检产品外表面喷吹氦气,可以实现漏孔的精确定位;真空氦罩法采用有一定密闭功能的氦罩将被检产品全部罩起来,在罩内充满一定浓度的氦气,可以实现被检产品总漏率的测量。

真空法的优点是检测灵敏度高,可以精确定位,能实现大容器或复杂结构产品的检漏。真空法的缺点是只能实现一个大气压差的漏率检测,不能准确反映带压被检产品的真实泄漏状态。

真空法的检测标准主要有QJ3123-2000《氦质谱真空检漏方法》、GB/T 15823-2009《氦泄漏检验》,主要应用于真空密封性能要求,但不带压工作的产品,如空间活动部件、液氢槽车、环境模拟设备等。

2.3 正压法

采用正压法检漏时,需对被检产品内部密封室充入高于一个大气压力的氦气,当被检产品表面有漏孔时,氦气就会通孔漏孔进入被检外表面的周围大气环境中,再采用吸枪的方式检测被检产品周围大气环境中的氦气浓度增量,从而实现被检产品泄漏测量。按照收集氦气方式的不同,又可以将正压法分为正压吸枪法和正压累积法。其中正压吸枪法采用检漏仪吸枪对被检产品外表面进行扫描探查,可以实现漏孔的精确定位;正压累积法采用有一定密闭功能的氦罩将被检产品全部罩起来,采用检漏仪吸枪测量一定时间段前后的氦罩内氦气浓度变化量,实现被检产品总漏率的精确测量。

正压法的优点是不需要辅助的真空系统,可以精确定位,实现任何工作压力下的检测。正压法的缺点是检测灵敏度较低,检测结果不确定度大,受测量环境条件影响大。

正压法的检测标准主要有QJ3089-1999《氦质谱正压检漏方法》、QJ2862-1996《压力容器焊缝氦质谱吸枪罩盒检漏试验方法》,主要应用于大容积高压密闭容器产品的检漏,如高压氦气瓶、舱门检漏仪等。

2.4 真空压力法

采用真空压力法检漏时,需要将被检产品整体放入真空密封室内,真空密封室与辅助抽空系统和检漏仪相连,被检产品的充气接口通过连接管道引出真空密封室后,再与氦气源相连,当被检产品表面有漏孔时,氦气就会通过漏孔进入真空密封室,再进入氦质谱检漏仪,从而实现被检产品总漏率的测量。

真空压力法的优点是检测灵敏度高,能实现任何工作压力的漏率检测,反映被检件的真实泄漏状态。真空压力法的缺点是检漏系统复杂,需要根据被检产品的容积和形状设计真空密封室。这里需要说明在检漏过程要求确保充气管道接口无泄漏,或者采取特殊的结构设计将所有充气管道连接接口放置在真空密封室外部。

真空压力法的检测标准有GB/T 15823-2009《氦泄漏检验》,主要应用于结构简单、压力不是特别高的密封产品,如电磁阀、高压充气管道、推进剂贮箱、天线、应答机、整星产品等。

2.5 背压法

采用背压法检漏时,首先将被检产品置于高压的氦气室中,浸泡数小时或数天,如果被检产品表面有漏孔,氦气便通过漏孔压入被检产品内部密封腔中,使内部密封腔中氦分压力上升。然后取出被检产品,将表面的残余氦气吹除后再将被检产品放入与检漏仪相连的真空容器内,被检产品内部密封腔内的氦气会通过漏孔泄漏到真空容器,再进入氦质谱检漏仪,从而实现被检产品总漏率测量。检漏仪给出的漏率值为测量漏率,需要通过换算公式计算出被检产品的等效标准漏率。

背压法的优点是检测灵敏度高,能实现小型密封容器产品的泄漏检测,可以进行批量化检测。背压法的缺点是不能进行大型密封容器的检漏,否则由于密封腔体容积太大,导致加压时间太长。此外,每个测量漏率都对应两个等效标准漏率,在细检完成后还需要采用其它方法进行粗检,排除大漏的可能。

背压法的检漏标准主要有QJ3212-2005《氦质谱背压检漏方法》、GJB360A-1996《电子及电气元件试验方法方法112密封试验》,主要应用于各种电子元器件产品检漏。

3 压力变化检漏方法

3.1 原理及分类

压力变化法是利用被检测产品内部密闭容器压力变化实现被检产品总漏率测量。一般漏率计算公式如下[3]:

式中 Q为被检测产品总漏率,Pa·m3/s;ΔP为测量时间间隔内的密封容器压力变化量,Pa;V为被测产品密闭容器容积,m3;Δt为测量时间间隔,s。

一般情况下,按照压力增大或减小的状态可以将压力变化法分为静态升压法和静态降压法,如果测量间隔时间前的压力小于测量间隔时间后的压力,则称之为静态升压法,反之则称之为静态降压法。按照所选用压力测量传感器的不同将压力变化法分为绝对压力变化法、差压力变化法和真空压力变化法。

3.2 绝对压力变化法

绝对压力变化法是采用绝对压力传感器实现被检测产品密闭容器内的压力测量,对于真空密闭容器来说,停止抽空后通过测量某一间隔时间段内压力上升值,实现被测产品总漏率测量,对于带压容器来说,通过测量充气后某一间隔时间段内压力下降值,实现被测产品总漏率测量。

绝对压力变化法的优点是测量方法简单,操作方便。绝对压力变化法的缺点是被测容器内压力受温度影响大,当需要精确测量漏率时,必须对测量结果进行温度修正,但是对于不同结构的被检件,压力随温度变化规律也不完全一样,需要通过大量的实验来确定修正方法。

绝对压力变化法一般应用于真空系统研制过程的定量检漏工作,某些特殊场合的在线泄漏检测,例如神舟飞船舱门密封性能的在轨检测工作就是采用绝对压力变化法的原理实现的。

3.3 差压力变化法

差压力变化法是采用差压传感器实现被检测产品密闭容器内的压力测量,差压传感器的两端分别连接被测容器和基准容器,其中基准容器是一个相对被检件来说是无泄漏存在的密闭容器,测量前向被测容器和基准容器同时充入相同压力的气体,经过一定时间间隔后,如果被测容器有漏孔存在,会导致被测容器的压力发生变化,而基准容器压力不会发生变化,差压传感器会给出了这一微小压力变化量,从而实现漏率测量[4]。

差压力变化法的优点是检测灵敏度高,可以克服温度变化对测量结果的影响。差压力变化法的缺点是结构复杂,需要专用的测量系统才能实现。这里需要说明,基准密闭容器的容积材料需要与被测对象的容积应尽量一致或接近,以减小测量不确定度。

差压力变化法一般应用于批量化小型产品的检漏工作。

3.4 真空压力变化法

真空压力变化法是利用真空抽气原理实现双道密封结构的泄漏检测工作。双道密封结构示意图如图2所示,其工作过程中,存在两个泄漏通道,一个是被检件外的大气环境向密封腔体内泄漏,一个是密封腔体向被检件内的真空环境泄漏,密封腔体内压力变化可以用公式(2)表示。通过求解公式(2)表示的微分方程可以获得密封腔体内的压力变化与两道密封圈漏率间的关系,从而实现漏率测量[5]。

式中 Pt为密封腔体内的瞬时压力,Pa;t为测量时间,s;V为双道密封腔体容积,m3;Q1为密封圈1的泄漏率,Pa·m3/s;Q2为密封圈 2 的泄漏率,Pa·m3/s。

图2 双道密封结构泄漏示意图

真空压力变化法的优点是能准确分辨出双道密封结构的哪一个密封圈发生泄漏,从而为堵漏工作提供指导。真空压力变化法的缺点是两道密封圈的漏率相等时,密封腔体内压力不会发生变化,无法通过压力变化法实现漏率测量。

真空压力变化法适用于双道密封结构的长期在线密封泄漏监测,例如空间站主结构静密封泄漏监测工作。

4 原工质检漏方法

4.1 原理及分类

原工质检漏是利用被检件内部填充的工作介质作为示漏气体,实现被检件漏率测量的一种方法。当采用原工质检漏时,被检件内部在检测前已经填充了示漏气体,不需要额外的充压设备。如果被检件有漏孔存在,被检件内部的示漏气体就会通过漏孔泄漏到被检件所处的周围环境中,采用大气取样或真空收集的方式将泄漏出来的气体引入到测量传感器内部即可实现被检件泄漏检测,经常使用的传感器是质谱计。

原工质检漏一般适用于无法采用氦质谱检漏法或压力变化检漏法的场合,在航天产品领域,原工质检漏方法主要应用于发射场卫星推进剂、火箭共底危险气体、镍氢蓄电池和空间站舱外气体泄漏检测等场合,但是随着航天工业的发展,原工质检漏方法的应用也将越来越广泛。

4.2 卫星推进剂泄漏检测方法

卫星推进剂泄漏检测主要采用质谱计和化学检测管联用的方法对空气中甲基肼、无水肼、四氧化二氮进行检测。检测系统示意图如图3所示[6]。测量时,利用取样泵的抽气能力将远端的气体引到检测系统内,进入检测系统的气体可以部分进入化学检测管实现大泄漏量定期测量,部分气体进入质谱室,实现微小泄漏量连续测量。

此外,为了确保测量结果的准确性,采用TLD-1型有毒气体检测仪对卫星周围环境及星内进行定期检测。该仪器采用化学纸带和光比色相结合的方法实现漏率的精确测量,检测灵敏度可以达到20 ppb量级。

4.3 火箭共底危险气体泄漏检测方法

火箭共底危险气体泄漏检测采用β-FD型放射电离规(简称β规)进行总压力测量和质谱计进行分压力测量相结合的方法实现[7]。检测系统结构示意图如图4所示,主要由气体成分分析装置、抽空装置和压力测量装置组成。其中,压力测量装置用于共底内压力总压力测量,核心部件是一台只β规。气体成分分析装置用于对共底内氢、氧浓度进行监测,其核心部件为一台质谱计。抽空装置用于共底的抽空和气体取样。当共底内氢浓度和总压力达到危险值时系统给出报警信号,从而实现火箭低温级共底的安全监测。

火箭共底安全监测系统是火箭发射场工作的标配仪器之一,已经应用于历次发射场火箭共底危险气体泄漏检测工作,准确率达到100%。

4.4 镍氢蓄电池泄漏检测方法

图3 卫星推进剂泄漏检测系统结构示意图

图4 共底安全监测系统结构示意图

镍氢蓄电池检测采用类似氦质谱真空压力法实现镍氢蓄电池的泄漏量测量,测量传感器为质谱计。测量系统结构图如图5所示,主要由质谱分析部分和样品检测部分组成[8]。当检测时,镍氢蓄电池放置在检漏室内,由于镍氢蓄电池结构为全密封金属罐体结构,罐内装有工作介质和氢气,在电池不充电情况下,电池内氢气压力约为常压(0.1 MPa),当电池充满电时,电池内氢气压力会上升至数个MPa,如果电池罐体有泄漏,充电前后氢气泄漏量会明显上升,通过比较充电前后质谱室内氢气分压力的变化量实现氢泄漏量测量。

图5 镍氢蓄电池检漏系统结构示意图

镍氢电池检漏工作起初是为了开展长寿命通信卫星研制工作的需要,目前已经广泛应用于各类深空探测航天器的镍氢蓄电池研制工作中,是评价镍氢蓄电池在轨工作寿命的关键手段之一。

4.5 空间站舱外气体泄漏检测方法

空间站舱外气体泄漏检测方法主要是利用空间站在轨运行的太空属于高真空条件,当舱体发生泄漏时,会导致漏孔周围空间的压力会上升,从而实现漏率测量。目前成功应用的方法主要有指向规法和质谱计法,其中指向规法采用高灵敏度真空规实现空间站周围气体总压力的测量,通过比较测量点压力与空间舱外周围空间压力的差别实现漏率测量;采用质谱计的分压力测量原理,通过测量漏孔周围某种特质气体的分压力变化情况实现泄漏量测量。

在指向规法检漏方面,上个世纪70年代,NASA马歇尔空间飞行中心(MSFC)开展了用于空间环境下使用的指向规检漏仪研制工作,所研制的检漏仪原打算用于空间站和航天器的舱外在轨检漏工作[9]。俄罗斯研制了一种双探头指向规式手持舱外检漏仪,从1993年开始在“和平号”空间站上进行科学实验,1998年“和平号”空间站因撞击发生泄漏时,该仪器用于在轨泄漏位置的探测。在质谱计检漏方面,NASA已研制成功一种名叫微量气体分析仪(Trace Gas Analyzer—TGA)的仪器[10],用于空间站宇航员出舱活动过程中的泄漏检测工作,能实现空间站舱外冷却系统氦泄漏、推进剂泄漏、空间站密封舱体泄漏等检测工作。该仪器的关键部件是一台微型四极质谱计,能实现氨、肼、氮和氧等气体的分压力测量。目前,TGA检漏仪被放置在空间站内,处于待命状态。

5 航天产品泄漏技术发展趋势

随着航天技术不断发展,特别是我国载人航天的发展、空间站长期工作要求、探月工程和深空探测等航天项目的陆续展开,必然对航天器密封及检漏技术提出新的要求。未来泄漏检测技术应着重开展如下方面研究工作:

(1)不同密封结构检漏技术研究。空间站是供人长期工作的航天器,为了保证空间站在轨长期安全运行确保航天员的安全,需要对空间站密封舱进行泄漏检测。空间站需要泄漏检测的密封结构包括:舱内泄漏检测、空间站双道静密封结构检测和舱外漏率检测。

(2)极小漏率密封容器的漏率检测。在探月工程和深空探测任务中,为了保证对星球表面“土壤”进行成分分析的真实性,需要极小漏率的探测样品封装容器,漏率值要求达到10-13Pa·m3/s。为了满足极小漏率检测的要求,必须研究高灵敏度检测装置和检测方法,对密封容器进行评价。

(3)航天器密封器件在空间环境中原工质泄漏检测技术研究。通过地面试验和密封评价,确定航天器装有液体介质的密封容器在空间运行过程中泄漏检测和漏率测量,以保证航天器在轨运行的长寿命指标要求。

(4)航天器密封设计采用的新材料、新结构、新工艺的密封性能评价。需要重点开展空间密封材料对氧、氮、空气及氦等舱内实际气体的渗透率测试。不同密封结构、不同工作状态下的漏率比对测量。密封材料和密封结构加速老化试验后的漏率性能变化测试等。

[1]肖祥正.泄漏检测方法与应用[M].北京:机械工业出版社,2010;50.

[2]吴孝俭,闫荣鑫.泄漏检测[M].北京:机械工业出版社,2005;98~102.

[3]达道安.真空设计手册[M]第三版.北京:国防工业出版社,2004;1272.

[4]喻新发,闫荣鑫,孟冬辉.差压检漏系统压力与温度响应的计算分析[J].航天器环境工程,2006(3);175~176.

[5]孙冬花,陈联,丁栋,等.空间站双道密封压力变化检漏技术研究[C].中国真空学会质谱分析和检漏专业委员会第十六届年会,2011;100~105.

[6]王荣宗,赵忠,孙天辉.便携式推进剂泄漏检测仪[J].导弹与航天运载技术,1993(3);55~62.

[7]陈光奇,王丽红,孙冬花,等.火箭低温贮箱的新型共底安全监测系统[J].导弹与航天运载技术,2010(4);46~48.

[8]陈光奇,王荣宗,陈联,等.镍-氢蓄电池氢检漏系统设计及特性.中国真空学会质谱分析与检漏专业委员会第十四届年会,2007;20~24.

[9]K.W.Woodis,Leak detector for use in space environment,Marshall Space Flight Center,NASA TN D-5841,1970.

[10]Chutjian A,.Darrach M R,etc.A miniature Quadrupole Mass Spectrometer Array and GC For Space Flight:Astronaut EVA and Cabin-Air Monitoring.00ICES-202;1~10.

猜你喜欢

质谱真空容器
《真空与低温》征稿说明
《真空与低温》2022年总目次
容器倒置后压力压强如何变
气相色谱质谱联用仪在农残检测中的应用及维护
难以置信的事情
“质谱技术在核工业中的应用”专辑
EVOLO真空胎专用转换组和真空气密胎垫
成都仪器厂氦质谱检漏仪
取米
罕见病的“政策真空”