微弱信号混沌检测方法的抗噪性能研究
2012-07-31孙文军芮国胜
孙文军,芮国胜,张 嵩,张 洋
(1.海军航空工程学院研究生管理大队,山东烟台264001;
2.海军航空工程学院信号与信息处理山东省重点实验室,山东烟台264001)
0 引言
强噪声背景下微弱信号的检测广泛应用于工业故障诊断及通信信号接收等领域,对新技术研究及相关领域的发展具有重要的意义[1-2]。噪声对弱信号检测实现的影响是该领域中的一个重要课题。文献[3]讨论了高斯白噪声对弱信号混沌检测的影响,文献[4]主要研究了色噪声背景下微弱正弦信号的混沌检测方法,文献[5]研究了基于混沌相平面变化的微弱信号检测算法,实现了信噪比为-48 dB条件下微弱信号的检测。
应用混沌相平面检测算法对各种噪声条件下系统的检测性能进行了研究,对基于Duffing方程的混沌系统在白噪声、色噪声及脉冲噪声等各种噪声背景下的免疫性进行了仿真分析,为进一步探究混沌系统优良抗噪性能的机理,降低强噪声背景下可检测信号的信噪比门限提供了一定的依据和借鉴。
1 基于Duffing振子的正弦信号检测
混沌动力学系统主要有Duffing模型和Lorenz模型和Vanderpol模型等,其中Duffing方程研究的比较充分,在微弱信号检测领域应用广泛[6]。Holmes型Duffing方程标准形式如下:
式中,γcos(ωt)为系统内置周期策动力,k为阻尼比,-x+x3为非线性恢复力。
基于Duffing方程构成的混沌系统对周期策动力的强度γ有强烈的敏感性,在阻尼比固定的情况下,随着周期性策动力的强度变化,系统将历经同宿轨道、分叉轨迹、混沌状态、临界状态以及大尺度周期状态等,表现出丰富的非线性动力学特性[7]。其中,系统在混沌态对应的相图为一定区域内永不封闭的轨迹,在大尺度周期态对应的相图为封闭曲线,二者截然不同,因此,常将系统由混沌状态到大尺度周期状态的转变作为微弱信号检测的依据,如图1所示(图2均略去了过渡状态点)。
弱信号检测原理:将待测信号作为作为Duffing方程周期策动力的摄动,当系统周期策动力γ=γd时,系统处于临界状态。但是此时若有满足特定条件的信号加入到系统中,即使信号的幅值极小,系统也将发生相变由混沌状态进入大尺度周期状态,然后根据系统是否发生相变来判定信号的存在与否及被测信号幅度、频率等物理量。
2 噪声影响分析
如果在微弱信号检测中不考虑噪声的影响,系统在混沌态和大尺度周期态下的相平面轨道都是平滑的。但是,事实上在任何信号检测过程中,检测过程中的噪声都是不可避免的。
假设n(t)为检测过程中的噪声,添加噪声n(t)后,系统检测方程为:
分析表明,Duffing系统在外加周期驱动力时的平衡态为双曲平衡态。假设系统检测方程在临界状态下的解为x,用Δx(t)表示噪声对系统检测输出x(t)的微小扰动,其中,假设噪声的均值为0,方差为σ2,经整理得出噪声存在的情况下系统的随机微分方程形式[8]:
相比系统检测输出x(t),Δx(t)的值很小,所以略去Δx(t)的高阶量,得到式(3)的矢量微分方程形式:
其中,主要矢量分别表示为:
该矢量微分方程存在一个满足某个初始条件的唯一的解,可以表示为:
式中,Φ为系统的状态矩阵。由于主要对系统稳态时的性能进行分析,而式(10)第1项为暂态解,将很快衰减为0,对于第2项,考虑其统计特性,有:
其中,
ΓYY(u,v),ΓXX(t,s)分别表示输入噪声在时刻u和v,输出噪声在时刻t和s的相关函数矩阵。在式(11)中,令 u=v,t=s,t0= - ∞,可以得到噪声在某时刻的均方值:
由上可以得出结论:噪声并没有对系统原轨迹产生根本的影响,只是使系统的运行轨迹变得不再光滑,在理想轨迹附近有波动,即噪声使系统输出相轨道上布满了“毛刺”,其粗糙程度的大小由方差决定,但总体均值为零。另外,由于上述推导过程中对噪声分布的问题并没有进行限定,因而理论上,对于任意分布的平稳随机噪声,基于Duffing方程的混沌系统都具有良好的免疫性能。
3 仿真实验分析
(1)实验1 混有白噪声的正弦信号检测
调整系统的内置周期策动力强度为γ=0.80,使系统处于临界状态,加入高斯白噪声并逐渐增加噪声强度,发现系统仍将处于混沌状态,如图2(a)所示;加入混有高斯白噪声的正弦信号,待测信号强度为0.01 V,系统将跃变到大尺度周期状态,如图2(b)所示;由于噪声方差较小,系统相轨迹比较平滑,“毛刺”几乎看不到;继续增大白噪声强度,系统轨道将变粗,“毛刺”增多,如图2(c)所示;当噪声增加到一定强度时,噪声干扰将占据主导地位,由系统相图将无法判别系统是否发生相变进入了大尺度周期状态,如图2(d)所示。
图2 不同信噪比下系统检测相图
系统可检测信号的信噪比为:
其中,图2(b),图2(c),图2(d)的信噪比分别为:-26 dB,-36 dB和 -46 dB。进一步的仿真实验表明,基于Duffing方程的混沌检测系统的检测门限可达-42 dB。
(2)实验2 混有色噪声的正弦信号检测
采用高斯白噪声通过低通滤波器的方法产生色噪声,其中滤波器为四阶低通滤波器。系统传递函数为:
其中,通过调节滤波器参数k,可以实现对噪声功率的控制。归一化的通带截止频率为 ωp=0.15 Hz,阻带起始频率为 ωs=0.2 Hz,调整滤波器参数 k,使得噪声功率变为2.115×10-4W,待测正弦信号强度为0.01 V,加入正弦信号后系统的相轨迹跃变到大尺度周期状态,此时系统实现检测信号的信噪比为SNR= -29.633 0 dB。
(3)实验3 混有脉冲噪声的正弦信号检测
该节对混有脉冲噪声的正弦信号进行检测实验,噪声的脉冲峰值分别为 Vp=0.4,0.6,0.8,1.0,1.2,1.4,对受到不同强度噪声污染的正弦信号进行检测实验,待测信号强度为B=0.01 V。检测结果表明,Vp=1.0时,系统相轨迹仍然非常平滑,Vp=1.2时,系统相轨迹在脉冲噪声峰值处有相应的大幅度冲击相应。故系统可检测信号的最大信噪比表示为:
(4)实验4 混有复杂噪声的正弦信号检测
对复杂噪声条件下混沌检测系统的抗噪性能进行实验分析。这种噪声在低振幅部分具有高斯特性,在高振幅部分具有近似于指数正态分布特性,总体可以表示为背景高斯白噪声和脉冲噪声的叠加,噪声模型为:
定义偏差Vd为:
通过控制Vd的大小来模拟噪声成分的变化。Vd较小时,噪声中的脉冲成分所占的比例较小,噪声主要表现高斯特性;而当Vd的值增大时,噪声中的脉冲成分所占的比例也会随之变大,此时,脉冲成分集中了噪声的大部分能量,将对检测系统的性能产生显著的影响。
Vd=2和Vd=10时的噪声分布分别如图3和图4所示,由仿真可以明显地看出2种情况下噪声分布的差别(仿真实验中固定常量A=1)。
图3 Vd=2时噪声分布示意图
仿真实验结果表明,Vd较小时(Vd=2),噪声主要表现高斯特性,只有极少脉冲成分。采用式(15)的信噪比计算公式,系统可实现的信号检测门限为SNR= -41.693 3 dB;Vd较大时(Vd=4.5),噪声中的脉冲成分将继续增加,系统可实现的信号检测门限为 -39.385 1 dB;继续增大 Vd值(Vd=7),噪声中的脉冲成分增加,系统可实现的信号检测门限为-25.342 2 dB;
Vd非常大时(Vd=10),噪声将以脉冲成分为主,系统可实现的信号检测门限为-17.605 5 dB。
图4 Vd=10时噪声分布示意图
4 结束语
研究了基于Duffing方程的微弱信号检测方法,采用混沌相平面检测算法对不同噪声条件下算法的抗噪性能进行了分析,理论分析和仿真实验均表明基于Duffing方程的混沌检测算法对白噪声、色噪声、脉冲噪声及混叠噪声等都具有较强的免疫性和较低的信噪比工作下限,相对于传统的时域信号处理方法具有很大的优势。对基于Duffing方程的微弱信号检测方法的抗噪性能进行分析,为进一步探究混沌系统优良抗噪性能的机理,降低强噪声背景可检测信号的信噪比门限提供了一定的理论依据和借鉴。混沌检测方法优异的抗噪性能,使得它在弱信号检测及相关领域极具发展前景。
[1]李爽,徐伟,李瑞红.利用随机相位实现Duffing系统的混沌控制.物理学报,2006,55(3):1049 -1054.
[2]CHEN H,VARSHNEY P K,KAY S M,et al.Theory of stochastic renson-ance effect in signal detection:part1-dix ed detectors.[J]. IEEE transactions on Signal Processing,2005,55(7):3172 -3185.
[3]兀旦辉,李秦君,杨萍.噪声对基于Duffing方程弱信号检测的影响研究.计算机测量与控制,2010,18(1):61-63.
[4]李月,杨宝俊,石要武.色噪声背景下微弱正弦信号的混沌检测[J].物理学报,2003,52(3):526 -530.
[5]张浩然,侯楚林.基于混沌相平面变化的微弱信号检测[J].计算机测量与控制,2010,18(12):2718 -2720.
[6]WANG Xu-yi,FEI Rui-wang.Detection of Amplitudevaried Weak Signal by Gene-tic Adaptive Stochastic Resonance Algo-rithm [C]∥ICEMI,2007(2):626 -630.
[7]叶青华,黄海宁,张春华.用于微弱信号检测的随机共振系统设计[J].电子学报,2009,37(1):216 -220.
[8]甘建超,张仔兵,肖先赐.利用周期振子检测微弱相位编码信号[J].信号处理,2004,20(5):450-455.