直线电磁驱动串并联阵列人工肌肉设计研究
2012-07-25秦现生张雪峰王战玺
李 靖 秦现生 张雪峰 王战玺
西北工业大学,西安,710072
0 引言
在战地、反恐、抢险救援、危险环境作业等场合,足式机器人的应用越来越广泛。在这些场合,机器人的跳跃、奔跑、平稳行走和抗外界冲击等能力以及对复杂地形的适应性逐渐引起人们的重视,由此对机器人关节的瞬时力矩、摆动频率和功率密度等提出了更高的要求。目前机器人关节普遍采用“旋转驱动器+传动机构”的驱动方式,受驱动器本身的力-加速度特性以及传动机构的动力学特性的限制,很难满足日趋复杂的军事和民用应用环境对高性能关节运动的要求。因此,创新关节驱动显得非常重要[1]。肌肉驱动的动物关节与传统驱动器驱动的机械关节相比,具有瞬时爆发力大、缓冲能力强、结构紧凑、能量密度高等优点。
人工肌肉可采用电磁激励、压电材料(PZT)、超声波驱动器、气动(PMA)、液压、聚合物(EAP)、形状记忆合金(SMA)等方式实现。美国波士顿动力公司的BigDog腿部关节采用液压驱动,自重109kg,可承载154kg在冰雪、碎石、泥泞沙土、山坡、林地等环境以4km/h的速度行进[2];采用美国人工肌肉研究所研制的导电聚合物制造的机械手可以举起自身重量1000倍的物体,功率密度高达1000W/cm3[3];韩国建国大学采用轻质压电材料制作的人工肌肉研制的仿生鱼,可实现水中姿态调整,游泳速度达277.2m/h[4];德国慕尼黑科技大学采用气动人工肌肉研制的仿人形机器人,具有比较好的柔顺性[5];赵淳生[6]研制的超声波驱动器可用于微型机器人和精密仪器仪表,具有响应速度快、力矩/质量比大等特点。然而,液压和气动人工肌肉为宏观仿生生物骨骼肌,会导致运动轨迹精确控制困难;压电材料人工肌肉应变小,难以用于大位移关节收缩运动;导电聚合物响应速度慢、控制困难、材料制备工艺复杂;超声波驱动器受摩擦材料的限制,易磨损、散热难、寿命短。
为此,本文基于工程仿生学,在分析动物骨骼肌生理构成和驱动机理的基础上,模拟骨骼肌的微观结构,建立了类肌肉肌纤维多肌小节串并联构成的阵列式人工肌肉结构模式。类比人工肌肉结构,选择直线式电磁驱动,并对驱动器电磁场进行有限元仿真分析,完成了样机制作和实验测试。
1 骨骼肌的生物学基础
动物的关节运动由骨骼肌通过收缩来实现[7]。从图1所示的骨骼肌结构可以看出,骨骼肌由肌束组成,肌束由肌纤维组成。每一个肌纤维由1000~2000条肌原纤维平行整齐排列组成。肌原纤维排列整齐,由明显的明带I和暗带A组成[8]。I带正中间有一条密集横线,称为Z线或者Z层,一个完整的肌小节由Z线+1/2个I带+A带+1/2个I带+Z线构成。因此骨骼肌在宏观上可以看作由若干肌小节通过串并联组成,即其运动基本单位为肌小节。
图1 哺乳动物骨骼肌组成结构图[7,10]
Huxley[9]提出了关于肌肉运动机理的肌丝滑行 学 说 (sliding-filament theory of muscle contraction)。该学说认为,肌肉的收缩(肌小节的缩短)是肌动蛋白纤维(细肌丝)相对于肌球蛋白纤维(粗肌丝)主动滑行的结果。当肌小节处于舒张状态时,肌动蛋白纤维(肌动蛋白)与肌球蛋白纤维(肌球蛋白)之间重叠减少,肌原纤维伸展;当肌小节处于收缩状态时,肌动蛋白纤维与肌球蛋白纤维之间重叠增加,则肌原纤维收缩。
2 人工肌肉串并联阵列模式
上文介绍的骨骼肌在宏观上可以看作由若干肌小节通过串并联组成,参照骨骼肌的微观结构机理,建立多个类肌小节驱动器串并联结构矩阵的人工肌肉结构模式,如图2所示。
根据生物学的研究结果,若将肌小节视为肌肉的基本组成元素(基元),那么n个肌小节则串联而成一条肌原纤维(向量),k条肌原纤维(向量)再并联为一块肌肉(矩阵)。依照人工肌肉的类肌纤维阵列式驱动结构,得到人工肌肉的构造方程:
图2 肌小节串联组成的肌原纤维模式
式中,J为人工肌肉肌纤维阵列结构;ci表示编号为i的向量肌原纤维,i=1,2,…,n;xij表示编号为i的向量肌原纤维中的第j个基元肌小节,j=1,2,…,k。
若将人工肌肉状态以类肌小节状态矩阵的方式表达,即人工肌肉收缩距离矩阵 ΔSk×n=[Δsij]k×n,人 工 肌 肉 有 效 输 出 力 矩 阵Δk×n=[δij]k×n,人工肌肉受到的外作用力矩阵Fk×n=[fij]k×n,人工肌肉质量矩阵Mk×n=[mij]k×n,则在t时刻的收缩速率矩阵Vk×n=[vij]k×n和收缩加速度矩阵Ak×n=[aij]k×n可表示为
3 类肌小节直线电磁驱动器
对比现有主要人工肌肉驱动器的性能(表1)可知,与其他人工肌肉材料相比,电磁驱动器在应力等性能方面稍差,但在应变系数及功率密度等性能方面却具有很大的优势,故选择电磁驱动机理进行人工肌肉设计。
表1 人工肌肉驱动器的性能对比[11-13]
参考肌小节收缩原理对类肌小节驱动器进行设计:利用线圈绕组磁场和永磁体磁场相互作用,通过控制左右线圈电流的大小和方向来控制永磁体的位置和输出力,形成舒张和收缩状态。考虑到肌小节所处的状态是由肌动蛋白纤维与肌球蛋白纤维之间的重叠程度所决定的,故模拟设计了类肌小节分别处于舒张和收缩状态时的结构,如图3所示。
图3 肌小节收缩与舒张状态
类肌小节驱动器的微观如图3所示,上一级类肌小节驱动器的静子(端盖部分)与下一级类肌小节驱动器的动子直接连接在一起。动子的前半部分设计成中空结构,动子的后半部分设计成插杆形式,使其可以直接插入前端的中空部分。这样就可以利用后一级的动子中空结构提供前一级动子的移动空间。
这种串联机构既减小了串联连接件带来的无效长度,又减小了仿肌肉驱动器的整体长度,提高了压缩率。此外,该机构结构简单,制造和装配方便,减少了制造和装配带来的问题。在接触部分加入石墨固体润滑剂,以减少机械阻尼。
4 类肌小节驱动器电磁分析
类肌小节驱动器样机的相关参数如表2、表3所示。运用Maxwell软件对该驱动器样机进行电磁场有限元瞬态分析[14-15]。考虑到驱动器为圆筒结构,因此采用RZ平面进行仿真分析,其有限元网格划分如图4a所示,当上端线圈电流为0.5A时,电磁场磁通线分布如图4b所示。
样机的轴、线圈骨架等部分采用铝制材料,其相对磁导率较小,故其电磁阻尼不高。为进一步减少电磁阻尼,后续研究欲采用玻璃纤维制造这些结构,其不仅有较小的相对磁导率,同时有较小的导电率。
表2 驱动器材料
表3 驱动器设计参数
图4 类肌小节驱动器有限元分析
5 类肌小节驱动器性能测试
为了初步验证上述设计的可行性和有效性,对类肌小节直线驱动器样机分别进行了开环和闭环性能实验。实验装置如图5所示,其中,类肌小节直线驱动器样机静子部分固定在实验板上,动子通过滑轮连接砝码。驱动器的控制器是以89s52为核心的自研设备,实验过程使用S-PRI高速摄像机进行拍摄,并运用高速运动分析软件ProAnalyst对实验视频数据进行处理。
图5 类肌小节直线驱动器样机测试实验装置
5.1 开环控制实验
为了对比实验数据与仿真数据,设计开环控制实验1。在无负载的条件下,同时接通摄像机及类肌小节驱动器控制器电源,启动实验。图6为实验数据与瞬态仿真数据的对比图。其中,图6a所示为动子速度-时间曲线,由于样机存在着机械阻尼,故实验结果阻尼较大,样机动子很快地到达稳定状态,仿真曲线在0.15s左右到达稳定,实验曲线在0.04s左右到达稳定;图6b所示为动子位置-时间曲线,同样由于样机驱动器阻尼比较大,样机动子更快达到稳定位置,仿真曲线超调量约为24%,样机实验曲线超调量约为4.2%。对比结果显示,样机动子在安培力等电磁阻尼条件影响下,速度与位置相对于仿真能更快稳定在平衡点。
图6 类肌小节驱动器的实验曲线与仿真曲线
为了对比不同负载对类肌小节驱动器运动性能的影响,设计了开环控制实验2。在带不同质量砝码负载的条件下,同时接通摄像机及样机控制器电源,进行实验。图7所示为实验测得类肌小节驱动器速度、位置与时间关系曲线,图7a所示为不同质量砝码的速度与时间之间的关系,负载越小,类肌小节驱动器越快达到最高速度,其加速度越大;负载越大,惯性越大,振幅越大,达到稳定的时间越长。由图7b可以看出不同砝码的时间与位置之间的关系,负载越大,平衡位置超调量越小,平衡位置超调量随着负载增大而增大,实验的超调量约为12%~13%。
开环实验表明,类肌小节直线驱动器样机实验结果与仿真结果基本一致,能够在开环条件下工作,但速度与位置超调量较大。
5.2 闭环控制实验
在开环实验条件下,加入位移传感器,对样机动子的实时位置进行测量并反馈,构成闭环控制,以进一步测试样机的性能。本实验控制框图(图8)中,位置回路主要起加速动子运动的作用,速度回路起稳定动子运动的作用,两个回路共同形成了对静子电流的PI控制。速度回路的引入能有效减小动子运动的超调量。
图7 不同负载的开环控制实验曲线
图8 类肌小节驱动器闭环控制框图
相对于开环控制的带载实验,设计相应的闭环控制实验1。在不同质量砝码为负载的条件下,同时接通摄像机及电机控制器电源,进行实验。图9所示为不同负载条件下的闭环控制实测曲线。闭环控制通过位移传感器反馈的信息,调节静子电流,使动子的速度及位置均在0.03s左右达到稳定,超调量小于3.5%。通过实验可知,实验样机在闭环控制工作模式下,相关带载实验均能较好实现快速稳定的运动。相对于开环控制,由于加入了速度反馈回路,速度及位置超调量显著减小。
相对于开环控制带不同负载的运动性能实验,设计了相应的闭环控制实验2。在10g质量砝码为负载的条件下,同时接通摄像机及电机控制器电源,进行实验。图10所示为不同目标位置条件下的闭环控制实测曲线。闭环控制通过位移传感器的反馈,实时调节静子电流,使得动子能快速稳定地达到不同目标。实验表明,类肌小节驱动器在0.04s左右达到稳定,超调量小于3.5%。
6 结语
图9 不同负载的闭环控制实验曲线
图10 不同目标位置的闭环控制实验曲线
本文在分析动物骨骼肌的结构和运动形式的基础上,设计了基于电磁力的类肌肉肌纤维多肌小节串并联构成的阵列式人工肌肉,并对试制样机进行了不同负载及不同控制策略的实验。实验结果表明,在合理的控制策略下,类肌小节驱动器能够稳定地达到目标位置,超调量较小。此外,类肌小节驱动器能够还有高响应速度、高加速度等良好的运动性能,具有工程运用的前景。
[1]应申舜,秦现生,任振国,等.基于人工肌肉的机器人驱动关节设计与研究[J].机器人,2008,30(2):142-146
[2]Nelson G,Blankespoor K,Raibert M.Walking Big-Dog:Insights and Challenges from Legged Robotics[J].Journal of Biomechanics,2006,39:S360.
[3]Bar-Cohen Y,Xue T,Shahinpoor M,et al.Flexible,Low-mass Robotic Arm Actuated by Electroactive Polymers[C]//Proceedings of the SPIE International Smart Materials and Structures Conference.San Diego,1998:3329-07.
[4]Nguyen Q,Heo S,Park H,et al.Performance Evaluation of an Improved Fish Robot Actuated by Piezoceramic Actuators[J].Smart Materials and Structures,2010,34(4):1798-1810.
[5]Berring J,Kianfar K,Lira C,et al.A Smart Hydraulic Joint for Future Implementation in Robotic Structures[J].Robotica,2010,28(7):1-12.
[6]赵淳生.超声驱动器技术与应用[J].压电与声光,2009,31(1):148.
[7]冯元桢.生物力学[M].北京:科学出版社,1983.
[8]Brian M,Phil G,Alan M.Skeletal Muscle:Form and Function[M].2Ed.Champaign,Illinois:Human Kinetics Publishers,2006.
[9]Huxley A F.Muscle Structure and Theories of Contraction[J].Prog.Biophys.Biophys.Chem.,1957,7:255-318.
[10]Aigner M,Heegaard J.One-dimension Quasistatic Continuum Model of Muscle Contraction as a Distributed Control System[C]//Center for Turbulence Research-Annual Research Briefs.Stanford,1999:155-168.
[11]McBean J M.Design and Control of a Voice Coil Actuated Robot Arm for Human-Robot Interaction[D].Cambridge,Massachusetts:Massachusetts Institute of Technology,2001.
[12]王炜.类肌肉仿生驱动技术研究[D].西安:西北工业大学,2010.
[13]冯元桢.生物力学——活组织的力学特性[M].长沙:湖南科学技术出版社,1986.
[14]刘国强,赵凌志,蒋继娅,等.Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005.
[15]赵博,张洪亮.Ansoft 12在工程电磁场中的应用[M].北京:中国水利水电出版社,2010.